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EXECUTIVE SUMMARY 
 

Frost heave and thaw weakening are typical problems in northern regions. It is well 

known that frost heave is caused by water flow through capillary zone to a freezing 

front where it forms ice lenses (Guymon et al. 1984; 1993; Henry and Holtz 2001; 

Henry and Stormont 2002) and the s. Investigation of soil behavior in the capillary 

zone is in the range of unsaturated soil mechanics and the unsaturated transmission of 

water is the key to understand the frost heave problem.  

Bishop and Donald (1961) developed the first suction controlled triaxial test apparatus 

for testing on unsaturated soils. Since then, suction controlled tests have been 

extensively used and now have become a standard for characterization of unsaturated 

soil behavior (Delage 2003). Most important concepts for unsaturated soil mechanics 

were developed based upon results from suction controlled tests. However, tests for 

unsaturated soils are usually laborious, time-consuming, costly, and may not be 

justifiable for routine engineering projects. Due to the lengthy testing process, the test 

results, especially for the water content change, are not reliable or simply not 

available. The lack of reliable experimental data has posed great difficulties in 

developing coupled hydro-mechanical models for unsaturated soils.  

The objective of this proposed research was to develop a method to rapidly determine 

and analyze the unsaturated soil behavior. In this study, a new image based method 

was developed by integrating photogrammetry, optical-ray tracing, and least square 

estimation techniques to measurement the total and localized volume change during 

triaxial testing. High-suction tensiometers were developed for measuring suction 

changes in undrained compression tests for unsaturated soils. Locally available 

Fairbanks silt was used for the undrained isotropic compression and shear tests to 

characterize the constitutive behavior of the soil. The test results were used for 

constitutive modeling of the elasto-plastic behavior for the soil based upon the 

Modified State Surface Approach recently developed by the PIs (Zhang and Lytton 

2007a, 2007b, 2008, 2009a, 2009b, 2009c, 2009d, and 2009e). 

It was proved that this new method allows the use of conventional triaxial testing 

apparatus for saturated soils for the testing on unsaturated soils. The new approach 

can reduce the testing time required to characterize behavior for unsaturated soils 
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from approximately two to three years to a couple of weeks with more reliable 

measurement and more representative soil behavior.  

 



v 

 

TABLE OF CONTENTS 
 

Disclaimer  ......................................................................................................................... i  

Acknowledgements  .......................................................................................................... ii  

Executive Summary  ........................................................................................................ iii 

Table of Contents ............................................................................................................. vi 

List of Figures ................................................................................................................ viii  

List of Tables .................................................................................................................. xii 

List of Appendices .......................................................................................................... xii 

 
CHAPTER  

 I   INTRODUCTION ....................................................................................................1 

General ............................................................................................................1 
Research Objectives........................................................................................2 
Research Methodology ...................................................................................2 
 

 II   LITERATURE REVIEW  ......................................................................................6 

General ............................................................................................................6 
Triaxial Testing on Unsaturated Soils ............................................................6 

Volume Measurement Methods ..................................................................8 
High-suction Tensiometer ........................................................................26  

Constitutive Modeling of Unsaturated soils .................................................36 
 

 III  DEVELOPMENT OF A NEW VOLUME MEASUREMENT METHOD ..... 47 

General ..........................................................................................................47 
Principle of Photogrammetry ........................................................................48 
Optical-ray Tracing Technique .....................................................................52 
Proposed Method ..........................................................................................54 

Camera Calibration .................................................................................55 
Triaxial System Setup ...............................................................................57 
Image Capturing and Orientation ...........................................................59 
3D Reconstruction of Acrylic Cell ...........................................................60 
Refraction Correction ..............................................................................62 
Least Square Optimization .......................................................................64 

Method validation .........................................................................................65 
Validation on Stainless Steel Cylinder .....................................................66 
Validation on Saturated Sand Specimen ..................................................74 

Error Sources ................................................................................................77 
Differences from Existing Image Based Methods ........................................79 
Conclusions ..................................................................................................82 
 

    IV  DEVELOPMENT OF A NEW HIGH-SUCTION TENSIOMETER .............. 84 



vi 

 

General ..........................................................................................................84 
High-suction Tensiometer Fabrication .........................................................84 
High-suction Tensiometer Saturation ...........................................................92 
High-suction Tensiometer Calibration .........................................................93 
Maximum Attainable Suction ......................................................................95 
Conclusions ..................................................................................................96 

 
 V RESEARCH PROGRAMME AND PRESENTATION OF TEST RESULTS .. 97 

General ..........................................................................................................97 
Sample Preparation .......................................................................................97 

Soil Properties .........................................................................................99 
Specimen Compaction and Moisture Equalization ................................100 

SWCC .........................................................................................................101 
Triaxial Testing ...........................................................................................105 
Presentation of Test Results .......................................................................112 

Soil Water Retaining Curve ...................................................................112 
Undrained Isotropic Compression Test Results ....................................115 
Undrained Shear Test Results ................................................................123 
 

 VI CONSTITUTIVE MODELLING .................................................................... 128 

General ........................................................................................................128 
Modified State Surface Approach  .............................................................134 
Analysis of an Undrained Test Using MSSA  ............................................137 
Determining Parameter Values in BBM by Combining the  
MSSA and Newton Method  ......................................................................139 
 

 VII CONCLUSIONS AND RECOMMENDATIONS ......................................... 139 

Conclusions  ...............................................................................................139 
Recommendations ......................................................................................140 

 
REFERENCES .........................................................................................................   143 

APPENDICES  .........................................................................................................   156 

 



vii 

 

LIST OF FIGURES 
Figure  Page 

 

2.1  Schematic plot of suction controlled triaxial apparatus 7 

2.2  Triaxial test apparatus for saturated soils   8 

2.3  Double-wall cell method 10 

2.4  GCTS differential pressure transducer 11 

2.5  Test apparatuses used by Zhang et al 11 

2.6  Air pressure/volume controller 13 

2.7  Configuration of the test equipment with GDS air pressure/volume controller 13 

2.8  Local strain transducers from GDS 14 

2.9  Setup for LVDT method 15 

2.10  Axial strain measurements for LVDT method 15 

2.11  Radial strain measurements for LVDT method 16 

2.12  Schematic plot of the laser scanner method 17 

2.13  Laser scanner method setup 17 

2.14  Pinhole camera model 18 

2.15  Two-dimensional system model 19 

2.16  Volume measurement based on images 20 

2.17  2D image based method 20 

2.18  Setup on soil specimen for local strain measurement 21 

2.19  Schematic plot of the system setup for X-ray CT method 23 

2.20  System setup for X-ray CT method 23 

2.21  A horizontal CT slice 24 

2.22  DIC pixel subset matching 26 

2.23  Configuration of the 3D DIC method 26 

2.24  Tensile strength of water 28 

2.25  Schematic plot of the tensiometer developed by Ridley and Burland 30 

2.26  Tensiometer developed by Ridley and Burland 31 

2.27  Tensiometer saturation device 31 

2.28  Inside of the tensiometer saturation device 32 

2.29  Tensiometer developed by Guan and Fredlund 33 

2.30  Tensiometer and saturation cup by Guan 33 



viii 

 

2.31  Tensiometer developed by Meilani et al 34 

2.32  Tensiometer developed by Tarantino and Mongiovi 35 

2.33  Tensiometer developed by Take and Bolton 35 

2.34  Tensiometer developed by Lourenco et al 35 

2.35  Experimental tests establishing the concept of state surface 37 

2.36  Suggested stress paths to determine model parameters for the BBM 39 

2.37  Typical isotropic compression tests 40 

2.38  Drying-wetting test results ( 0s s= = constant) 41 

2.39  Wetting collapse tests 41 

2.40  Idealized results for weting collapse of a soil 42 

2.41 Yield surface in the p-q-s space in the BBM 43 

3.1  Principle of the Photogrammetry 48 

3.2  Coordinate systems 49 

3.3  Snell’s law 53 

3.4  Lens distortion 55 

3.5  Calibration targets (from Photomodeler) 56 

3.6  Testing system setup 58 

3.7  Typical camera stations 60 

3.8  Deformation of confining chamber under pressure 61 

3.9  Optical-ray tracing based on Snell’s law 62 

3.10  Camera and lens 65 

3.11  System setup 67 

3.12  Cell deformation due to applied confining pressure 69 

3.13  3D coordinates of the targets on specimen surface 70 

3.14  3D coordinates comparison for the 16 cross sections 71 

3.15  Membrane and sand used for specimen preparation 75 

3.16  Comparison of volume change 76 

3.17  Soil deformations under shear load 77 

4.1  EPXO pressure transducer 85 

4.2  Principle of pressure measurement based on Wheastone Bridge 85 

4.3  Schematic plot of the tensiometer 86 

4.4  Preparation for tensiometer fabrication 87 

4.5  Tensiometer fabrication 89 



ix 

 

4.6  Layout of the stainless steel ring 89 

4.7  Grommet fabrication by using silicone rubber 91 

4.8  High-suction Tensiometer 92 

4.9  Tensiometers installation 93 

4.10  Calibration results of two tensiometers 95 

4.11  Maximum attainable pressures 96 

5.1  Location of the used Fairbanks silt 98 

5.2  Fairbanks silt 98 

5.3  Particle size distribution of Fairbanks silt 99 

5.4  Compaction curve 99 

5.5  Specimen preparation 101 

5.6  Pressure plate test for determination of SWCC 103 

5.7  Use of salt solution for determination of SWCC 104 

5.8  Testing system from GCTS 106 

5.9  Membrane mounting on specimen 107 

5.10  Tensiometer installation 107 

5.11  Triaxial test setup 108 

5.12  Isotropic loading paths 110 

5.13  Soil specimen after testing 112 

5.14  SWCC of Fairbanks silt 113 

5.15  Soil water retaining curve under different confining stresses 113 

5.16  Soil suction equalization during isotropic compression and shear test 116 

5.17  Tensiometer response to sudden increase or decrease of confining pressure 118 

5.18  Suction changes due to variation of net confining stress 119 

5.19  Volume change due to variation of net confining stress under different water 

contents 120 

5.20  Casagrande method for determination of yield stresses 121 

5.21  Yield stresses based on Casagrande method 122 

5.22  Suction changes due to variation of volume 122 

5.23  Deviator stress versus axial strain under different moisture conditions 124 

5.24  Specific volume change versus axial strain under different moisture conditions 125 

5.25  Change of matric suction under different strain levels 126 



x 

 

5.26  Change of matric suction due to shear loading under different moisture 

conditions 127 

6.1  Principle of the MSSA 6 

6.2  Shape of the state boundary surface for the BBM 6 

6.3  Analysis of an undrained test using the MSSA 6 

6.4  Analysis of multiple undrained tests with identical stress histories 6 

6.5  Analysis of multiple undrained tests with different stress histories 6 

A.1 Container with and without water 6 

 



xi 

 

LIST OF TABLES 

Table Page 

 

3.1  Camera calibration parameters 66 

3.2  Measurement accuracy under different confining pressures 71 

3.3  Measurement accuracy under shear load 76 

4.1  Tensiometer calibration 94 

5.1  Soil properties of Fairbanks silt 100 

5.2  Osmotic suction for several salt solutions 105 

5.3  Loading paths for specimens with different initial suctions 111 

B.1  Camera stations 1 

B.2  3D coordinates for measurement points on cell wall 1 

B.3  Regression parameters for acrylic cell wall 1 

B.4  Point information on each corresponding image 1 

B.5  First optical-ray tracing (air to acrylic cell) results 1 

B.6  Second optical-ray tracing (air to acrylic cell) results 1 

B.7  Least square estimation for the point 1 



xii 

 

LIST OF APPENDICES 
                

Page 

Appendix A ....................................................................................................................... 80 

Appendix B ....................................................................................................................... 80 

 
 
 

 

 



1 

 

CHAPTER I 
 

INTRODUCTION 

 

GENERAL 

 

Frost heave and thaw weakening are typical problems in northern regions. It is well 

known that frost heave is caused by water flow through capillary zone to a freezing 

front where it forms ice lenses (Guymon et al. 1984; 1993; Henry and Holtz 2001; 

Henry and Stormont 2002) and the s. Investigation of soil behavior in the capillary 

zone is in the range of unsaturated soil mechanics and the unsaturated transmission of 

water is the key to understand the frost heave problem.  

 

Since Bishop and Donald developed the first suction controlled triaxial test apparatus, 

suction controlled tests have been extensively used and now have become a standard 

for characterization of unsaturated soil behavior. Most important concepts for 

unsaturated soil mechanics were developed based upon results from suction controlled 

tests. However, suction controlled tests are too laborious, time-consuming, and costly, 

and cannot be justified for routine engineering projects. It is not uncommon to take 

months or 2-3 years to characterize the stress-strain behavior for one unsaturated soil. 

In addition, measurements of soil behavior are very unreliable and might be incorrect. 

 

The objective of this proposed research was to develop a method to rapidly determine 

and analyze the unsaturated soil behavior. The research was based on the Modified 

State Surface Approach, which is recently developed by the PIs (Zhang and Lytton 

2007a, 2007b, 2008, 2009a, 2009b, 2009c, 2009d, and 2009e), to investigate the 

unsaturated soil behavior.  

 

RESEARCH OBJECTIVES 

 

The main objectives of this project were to, 1) develop a triaxial test apparatus with 

suction measurement ability, 2) systematically study the behavior of silty soils in 

Alaska under undrained conditions, 3) validate the concept that simple undrained 



2 

 

loading tests can be used as an alternative to suction-controlled triaxial tests to 

investigate unsaturated soil behavior. 

 

RESEARCH METHODOLOGY 

 

To meet the objectives of this study, the following major tasks were accomplished: 

 

• Task 1: Literature Review 

• Task 2: Development of Test Apparatus 

• Task 3: Development of a New Volume Measurement Method 

• Task 3: Validation of the Concept and Characterization of Soil Behavior  

• Task 4: Data Processing and Analyses 

• Task 5: Draft of Final Report and Recommendations  

 

Task 1: Literature Review 

 

The purpose of this task was to review the previous studies and current progress in 

laboratory characterization and constitutive modeling of unsaturated soils. In terms of 

laboratory characterization of unsaturated soil behavior, the emphasis was put on the 

existing methods of volume measurements of unsaturated soils since the suction-

controlling methods are now well-established. The principle of high suction 

tensiometers and its development were also reviewed since they were needed in the 

undrained compression and shear tests were performed with measurements of suction 

changes. Finally, the historical developments of constitutive models for unsaturated 

soils were critically reviewed. All these reviews were presented in Chapter II 

 

Task 2: Development of Testing Apparatus 

 

In this task, high-suction tensiometers were developed for measuring suction changes 

in undrained compression tests for unsaturated soils. After being fabricated, high 

suction tensiometers were calibrated and installed in the existing triaxial test 

apparatus for testing purpose. The methods proposed by Ridley and Burland (1993) 
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and Tarantino and Mongiovi (2003) were used. Efforts in this topic were reported in 

Chapter III.  

 

Task 3: Development of a New Volume Measurement Method 

 

A new method was developed in this study to measure both the total and local volume 

change of unsaturated soils specimens during triaxial testing by integrating 

photogrammetry, optical-ray tracing, and least square estimation. The method, when 

combined with the Modified State Surface Approach, allowed use of the traditional 

triaxial testing apparatus to characterize unsaturated soil behavior for constitutive 

modeling purpose with the minimal modifications. Chapter IV described the principle 

of the proposed method as well as detailed mathematic derivations and tests 

performed for the method validations. 

 

Task 4: Characterization of Soil Behavior 

 

Fairbanks silt was used to validate the concept and then for the systematical testing 

program. Basic soil properties of the selected soil such as Atterberg limits and 

gradation were determined. A series of undrained isotropic compression and shear 

tests at different moisture contents were performed to characterize the constitutive 

behavior of the soil. 

  

Task 5: Data Processing and Analyses 

 

Test results from the extensive testing program outlined in the previous section were 

used to calibrate the model parameters in the Barcelona Basic Model. The model 

parameters were the used to predict the soil behaviors and compared with the test 

results from which some discussions were made. 

 

Task 6: Draft of Final Report and Recommendations  

 

A final report was drafted upon the completion of data analyses. The report will 

include a literature survey and investigation of the results of other researchers, a 
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description of the research methods and approach for this project, the test procedures 

and results, the findings of this research project, and suggestions for further study. 

The recommendations of use of test results for further study of frost heave problem in 

Alaskan soils were provided as well.  
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CHAPTER II 

 

LITERATURE RIVIEW 

 

GENERAL 

 

In this chapter, literature review on the topics related to this research project is 

presented. The reviews focused on the following areas: exiting laboratory methods to 

characterize constitutive behavior for unsaturated soils, development of high suction 

tensiometers for direct suction measurements, and existing constitutive models for 

unsaturated soils. At present, suction-controlled triaxial tests are extensively used to 

characterize constitutive behavior for unsaturated soils. The equipment needed for 

unsaturated soil characterization differs from the traditional triaxial test apparatus for 

saturated soils in two aspects: the volume measurement system and the suction control 

system. While the adoption of the axis-translation technique for suction control is 

simple and well established, the measurement of volume change for unsaturated soil 

specimen during triaxial testing remains a great challenge. Consequently, a 

comprehensive literature review specially on existing volume change measurement 

methods for triaxial tests on unsaturated soils was conducted. Different from the 

existing research, this research uses the undrained test to characterize constitutive 

behavior for unsaturated soils. High-suction tensiometers were used to monitor 

suction changes during triaxial testing. Literature on development of high-suction 

tensiometers were also collected and summarized. Finally, existing theories for 

constitutive modeling of unsaturated soils were reviewed in the last section.  

 

TRIAXIAL TESTING ON UNSATURATED SOILS  

 

Triaxial test has been widely used to evaluate the unsaturated soil behavior. Bishop 

and Donald (1961) developed the first suction controlled triaxial apparatus. Since then 

suction-controlled tests have been extensively used and now have become a standard 

for characterization of unsaturated soil behavior (Delage 2003). Most important 

concepts for unsaturated soil mechanics were developed based upon results from 
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suction controlled tests. Figure 2.1 shows a Schematic plot of a suction controlled 

triaxial test Apparatus (Bishop &Donald 1961). It differs from the traditional triaxial 

test apparatus for saturated soils in two aspects: the double-wall volume measurement 

system and the suction control system using the axis-translation technique.  While the 

adoption of the axis-translation technique for suction control is simple and well 

established, the measurement of volume change for unsaturated soil specimen during 

triaxial testing remains a great challenge. A comprehensive literature review on 

existing volume change measurement methods for unsaturated soil specimen during 

triaxial testing is presented as follows. 

Oil
Water

Mercury
Perspex cylinder

Sample

Air tube
Ceramic disk

Fiberglass disk

 
Figure 2.1 Schematic plot of suction controlled triaxial apparatus  

(Bishop &Donald 1961) 

 

 

 

Volume Measurement Methods  
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A saturated soil is a two-phase system which included water and soil solids. For 

triaxial tests on saturated soil, the volume change of the sample is usually monitored 

by pore-water volume exchange. Figure 2.2 shows the setup of a conventional triaxial 

test apparatus for saturated soils. An unsaturated soil is commonly referred to as a 

three-phase system which included water, air and soil solid and the total volume 

change of unsaturated specimen is no longer equal to the pore water volume change. 

As a result, conventional method to measure the volume change for saturated soils is 

no longer applicable for unsaturated soils. In the past few decades, many research 

efforts have been directed to develop alternative volume measurement methods for 

unsaturated soil in triaxial tests. Geiser et al. (2000) summarized the existing methods 

for measuring volume change of unsaturated soil specimens, which can be broadly 

classified into three categories: (i) measurement of the cell fluid, (ii) direct 

measurement of the air and water volumes, and (iii) direct measurement on the soil 

specimen. 

 

    
Figure 2.2 Triaxial test apparatus for saturated soils   

 

 

 

Measurement of the Cell Fluid 
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The principle of this method is to deduce unsaturated soil volume changes from 

volume changes in the confining cell liquid. Although the principle is simple, several 

problems are often associated with this method, such as immediate expansion of cell 

wall caused by a pressure increase, Plexiglas creep under constant stress, and possible 

water leakage. Theoretically speaking, a conventional triaxial cell for saturated soils 

can be used if carefully calibrated. However, the accuracy of the method highly 

depends on the quality of the calibration procedure, the volume capacity and the 

precision of the measurements. Ideally, numerous calibrations are needed, as 

corrections depend on time, stress path and stress level (Lade 1988). Bishop and 

Donald (1961) added an inner cylinder sealed to the outer cell base to minimize the 

liquid volume (double-wall cell) as shown in Figure 2.1. To enhance accuracy, 

mercury was used as the cell fluid between the inner cylinder and the specimen which 

could prevent the air diffusion through the rubber membrane in long term. Water was 

used as the outer liquid while the mercury was enclosed in an internal jacket with the 

cell pressure applied to both sides of the jacket. To prevent expansion or contraction 

of the inner cell as a result of changes in the cell pressure, a hole was cut at the upper 

part of the inner cell wall to maintain equal pressure in both the inner and outer cells. 

A stainless steel ball floating on the mercury surface was used to indicate the mercury 

level. The variation of the mercury level in the inner cell was monitored by a 

cathetometer which is mounted at the front of the testing system. The overall volume 

change of the soil specimen was then deduced by the rise or fall of the mercury 

vertical level in the inner cylinder. Further improvements to the inner cylinder 

technique have been introduced by other researchers (Wheeler 1988, Cui and Delage 

1996, Rampino et al. 1999, Ng et al. 2002, and Zhang et al. 2011). Wheeler (1988) 

designed a double-wall cell to minimize the confining liquid in which an inner 

cylinder was sealed to both the top and the base of the cell. Both of the inner and 

outer cells were completely filled with water. Equal cell pressures were applied to the 

inner and outer cells to avoid deformation of the inner cell. Soil volume change was 

then inferred from the volume leaving or entering the inner cell. Cui and Delage 

(1996) replaced mercury with water for safety reasons. Rampino et al. (1999) 

designed an air-filled cell instead of water-filled to protect it from explosion by using 

an iron shield surrounding the cell. Ng et al. (2002) developed an open-ended, bottle-

shaped aluminum inner cell to measure the volume change of unsaturated soil during 
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testing as can be seen in Figure 2.3. The use of aluminum can significantly reduce the 

water absorption compared with acrylic materials. A high-accuracy differential 

pressure transducer was used to record the pressure difference between the water 

inside the open-ended inner cell and the water inside a reference tube in which a 

constant water pressure was maintained. The deformation of the soil sample will 

results in a water level change in the inner cell which could be reflected by the 

pressure difference between the inner cell and the reference tube. Figure 2.4 shows a 

differential pressure transducer used for double cell manufactured by GCTS. Zhang et 

al. (2011) used an ultra-high accuracy laser displacement sensor to measure the water 

level changes resulting from the volume change of the soil specimen. The system 

setup is shown in Figure 2.5 which consists of an open inner cell, outer cell, an 

external measurement cell connected to the open inner cell, and a laser transducer 

fixed above the measurement cell. The laser transducer transmits a laser beam to the 

water surface and reflected back to the sensor to monitor the water level change in the 

measurement cell which is then converted into specimen volume change. 

 

 
Figure 2.3 Double-wall cell method with differential pressure transducer (Ng 

et al. 2002) 
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Figure 2.4 GCTS differential pressure transducer 

Laser transducer

Sensor bracket

Measurement cell

Stand Bar

Inner cell

Water line

 
Figure 2.5 Test apparatuses used by Zhang et al. (2011) 

 

So far, double-wall cell method is the most widely used method for triaxial testing on 

unsaturated soils. However, this method requires major equipment modifications and 

is therefore expensive. A double-wall cell testing system typically costs $150,000 and 

is complex to operate. It cannot eliminate errors from the deformations of the top and 

the base of the cell. In addition, the air bubbles are difficult to remove and water used 
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required to be de-aired. Also for the acrylic inner cell, water absorption is affected by 

pressure, temperature, and time, making the calibration of the system very difficult. 

For small specimens (38 mm in diameter), errors due to this absorption can be 

significant. Larger specimen however requires longer testing time which increases 

creep. Steel inner cell can be an alternative to solve the problem. However, for this 

non-transparent inner cell, it is difficult to examine the existence of air bubbles in the 

cell. The double-wall cell has been extensively used for unsaturated soil testing in the 

past five decades. A carefully calibrated GDS double-wall cell can measure total 

volume change to an accuracy of 0.25%. 

 

Direct Measurement of the Air and Water Volumes 

 

In this method, volume change of a soil specimen is obtained by measuring the air and 

water volume changes separately and adding them together. It requires adding an air-

volume controller filled with air instead of water. Figure 2.6 is a typical Air 

Pressure/Volume Controller from GDS. To be successful, this method requires the air 

phase to be continuous. This method is sensitive to small temperature and 

atmospheric pressure changes. In addition, undetectable air leakage and diffusion 

through tubes, connections, and high-air-entry disk can also influence the accuracy of 

the measurements. The errors can be significant for consolidated drained tests, which 

often takes months to complete. Furthermore, excess pore air pressure can be 

generated during the test and lead to misleading volume changes. Various 

improvements were proposed to overcome these limitations. Geiser (1999) proposed a 

mixed air and water controller that allows reduction of air volume to the tubing only 

to minimize the errors from changes in atmospheric pressure and temperature. GDS 

adds a U-shaped observation tube filled with ethanol to their volume controller for 

pore air to maintain the pore air always at atmospheric pressure. Although these 

improvements are available, direct measurement of the air and water volumes is not 

extensively used by researchers at present. Laudahn et al. (2005) proposed the use of 

GDS Air Pressure/Volume Controller for measuring pore-air volume changes in 

drained tests under atmospheric conditions as shown in Figure 2.7.  
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Figure 2.6 Air pressure/volume controller (GDS) 

 

GDS pressure volume 
controller for air

GDS pressure volume 
controller for cell fluid
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Figure 2.7 Configuration of the test equipment with GDS air pressure/volume  

controller (Laudahn et al. 2005) 

 

Direct Measurement on the Soil Specimen 

 

In this method, soil volume change is computed from the direct measurements of axial 

and radial specimen displacements. This category can be further divided into contact 

and non-contact methods.  

 

 

 

 

Contact method 
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The contact method is a commonly used method in which local displacement sensors 

are directly attached onto the specimen (Figure 2.8) to measure axial/radial 

deformations during the test (e.g., Clayton et al. 1989, Blatz and Graham 2000, and 

Sun et al. 2003). Generally, radial displacements are measured at one to three discrete 

points and assumptions are made as to the shape of the specimens to assess the 

volumetric strain as shown in Figure 2.9. This method is normally applicable only for 

rigid specimens with small deformations. Measurements become meaningless as a 

means of measuring soil volume change, for example, if a shear plane forms across 

the specimen. It also requires use of specially designed sensors such as miniature 

LVDTs (Costa-Filho 1982; Klotz and Coop 2002) and Hall Effect transducers 

(Clayton and Khatrush 1986). Errors could be raised due to seating, closing of gaps 

between components, and axial and radial alignment. Generally less than three 

measurements can be made due to the limited space inside the cell. Hird and Hajj 

(1995) proposed use of proximity transducers mounted on a rigid tube around the 

sample to provide an output voltage proportional to the distance of a lightweight 

conductive target placed on the specimen as shown in Figures 2.10 and 2.11. 

Generally, this type of transducer is not waterproof and has to be sealed in housing. 

Another major drawback is that the target must be aligned with the sensor, which is 

difficult to satisfy. 

 

 
Figure 2.8 Local strain transducers from GDS 
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LVDT
Top cap 
drainage

Flow meterPump

Ionic solution  
Figure 2.9 Setup for LVDT method (Blatz and Graham 2000) 

 

 
Figure 2.10 Axial strain measurements for LVDT method (Hird and Hajj 1995) 
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Figure 2.11 Radial strain measurements for LVDT method (Hird and Hajj 1995) 

 

Non-contact method  

 

Romero et al. (1997) reported the use of an electro-optical laser scanner to determine 

the lateral profiles of specimen for radial deformation as shown in Figures 2.12 and 

2.13. It also allowed detection of non-uniformities and localized deformations along 

the two diametrically opposite sides of the specimen. The technique requires costly 

modification (> $20,000) and sophisticated installation procedures as shown in Figure 

2.13. A triaxial cell needs to be modified by opening a flat window for the laser ray. 

In addition, this method needs to deal with the refraction from the cell wall and the 

confining fluid, which has been neglected.  
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Figure 2.12 Schematic plot of the laser scanner method (Romero et al. 1997) 

 

 
Figure 2.13 Laser scanner method setup (Romero et al. 1997) 
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Digital Image Analysis (DIA) with refraction correction is another non-contact 

approach to measure soil volume change during testing by using images captured by 

cameras (Macari et al. 1997, Gachet et al. 2010). Pinhole camera model was adopted 

for this method as shown in Figure 2.14. However, when a photo is taken for a 3D 

object using a digital camera, a 2D image is obtained and the depth of the object is 

lost. As shown in Figure 2.14, object A and B product same picture on the image 

plane even though they are in different size and from different distance. In order to 

make correct measurements, the orientation (including position and shooting 

direction) of the camera relative to the object have to be known in order to reconstruct 

its 3D dimensions.  

 
Figure 2.14 Pinhole camera model 

 

For soil triaxial testing as shown in Figure 2.2, the presence of the confining acrylic 

chamber and the confining water in the line of vision between the camera and the soil 

specimen creates an apparent magnification of the specimen which must be accounted 

for if high accuracy is expected. Parker (1987) developed a two-dimensional model to 

use DIA with 2D refraction corrections to measure soil deformations in a 

conventional triaxial test cell. Macari et al. (1997) proposed a further improvement as 

shown in Figure 2.15. An idealized pinhole camera model is installed “far away” from 

the soil specimen. Then, a series of images were captured during testing as shown in 

Figure 2.16. For a digital image, every pixel in the image has a corresponding gray 

value (varied from 0 to 255, with 0 being black and 255 being white) which is 

dependent on its brightness. Based on the significant change of gray values for pixels 

at the edges of soil sample, the edges can be determined as shown in Figure 2.16. 

Then, volume of soil sample can be determined based on the shape change of the 

sample. To apply this method, system calibrations must be performed first and several 
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implicit requirements must be satisfied: (1) the soil specimen and the confining 

acrylic chamber are perfectly cylindrical and installed vertically; (2) the digital 

pinhole camera is placed perfectly at the horizontal direction and its shooting 

direction exactly passes through the center of the chamber; (3) the soil specimen is 

installed exactly at the center of the confining chamber and the relative positions of 

the camera, the chamber, and the soil specimen are accurately known; (4) deformation 

of acrylic cell wall under water pressure is negligible; and (5) when soil deforms, the 

deformations occur homogenously along the radial directions. With these 

assumptions, the Snell’s law is applied twice to determine the positions of the points 

on the surface of soil specimen. None of these conditions can be met in real 

conditions. The results of the image-based volume measurements depend greatly on 

how well the model conditions are satisfied throughout the test. Gachet et al. (2010) 

applied this method to determine volume changes of an unsaturated soil from its 

lateral profiles. The system setup for this DIA method is presented in Figure 2.17.  

 

Water

Cell wall

Pinhole Camera
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2α
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Figure 2.15 Two-dimensional system model (Macari et al. 1997) 
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Figure 2.16 Volume measurement based on images (Macari et al. 1997) 

 

 
Figure 2.17 2D image based method (Gachet et al. 2010) 

 

Besides been used for volume measurement during triaxial testing, DIA can also been 

used to detect strain localization (Lin and Penumadu 2006, Sachan and Penumadu 

2007). The system setup for this strain localization method by using DIA is similar to 

Figure 2.17. The only difference between the total volume and local strain 

measurement by using DIA is the setup on sample surface. In order to do a local strain 

measurement, as shown in Figure 2.18, grid points are required to be marked on latex 

membrane which covered sample surface. By tracking the movement of these grid 
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points with a high resolution camera, strain localization can then be determined. 

Before measurement by using this method, the whole system needs to be carefully 

calibrated as addressed by Sachan and Penumadu (2007). Similar to the total volume 

measurement by using DIA, the strain localization measurement inherits all the 

requirements for total volume measurement by using DIA method which could not be 

perfectly satisfied. In addition, this method cannot provide measurements for the 

whole soil specimen since back of the soil specimen is blocked by itself. Lin and 

Penumadu (2007) used this method to analyze a series of combined axial-torsional 

tests for kaolin clay under undrained conditions. It was found that for a spacing of 10 

mm between the grid points, the obtained accuracies of measurement are 0.2 mm and 

0.3 mm in the vertical and circumferential direction, respectively.  

 

 
Figure 2.18 Setup on soil specimen for local strain measurement  

(Sachan and Penumadu 2007) 

 

Methods Especially Developed for Measuring Strain Localizations 

 

Even if a soil element is subject to a homogeneous stress at its boundary, localized 

strain concentration can occur and propagate into zones of localized shear 

deformation or shear band because of the inevitable non-uniformity of the mass and 

stiffness of the material. As a result, the meaning of stress and strain variables derived 



21 

 

from boundary measurements of loads and displacements is only nominal. The only 

way to understand localized deformation is to measure the full field of deformation in 

the specimen (Viggiani and Hall, 2008). Several methods have been developed to 

track shear band including X-ray Computerized Tomography (CT), Digital Image 

Analysis (DIA) with Refraction Correction, and Digital Image Correlation (DIC). 

These methods can potentially be used to measure the total and local volume changes 

for unsaturated soil specimen during triaxial testing. A brief literature review of these 

methods in geomaterials studies is presented as follows.  

 

X-ray CT is a nondestructive imaging technique to detect the internal structure of an 

object using an X-ray source. The system setup for this strain localization 

measurement can be found in Figures 2.19 and 2.20. When X-ray beam passes 

through an object, some photons are either scattered or completely absorbed, resulting 

in the attenuation of the intensity of beam. The amount of attenuation depends upon 

the photon energy, the chemical composition, and the density of the object. This 

attenuation can be well captured by a camera. A typical image obtained through X-ray 

CT method of a soil slice is shown in Figure 2.21. By interpreting the beam intensity 

data, information regarding the internal structure of an object can be obtained. The 

information is presented as two dimensional cross sections or stacked to develop 3D 

renderings of the object for which total and local volume change can be deduced. 

Roscoe (1970) used X-ray radiography to measure two dimensional (2D) strain fields 

in sand. From the early 1980s, X-ray tomography was used by Desrues and coworkers 

(Desrues 1984, Colliat-Dangus et al. 1988, and Desrues et al. 1996) and later by 

Alshibli et al. (2000) and Lenoir et al. (2010) to provide valuable 3D information on 

evolution of void ratio inside a shear band and its relation to critical state.  
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Figure 2.19 Schematic plot of the system setup for X-ray CT method  

(Lenoir et al. 2010) 

 

 
Figure 2.20 System setup for X-ray CT method (Lenoir et al. 2010) 
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Figure 2.21 A horizontal CT slice (Lenoir et al. 2010) 

 

In the past 30 years, using X-ray CT has changed from a pioneering high-tech 

experimental approach to a well-recognized powerful experimental method. The 

accuracy could be as high as several microns for small-size soil specimens. The major 

disadvantage of X-ray CT technique for triaxial soil testing is that it is too expensive. 

Since the steel and water attenuates the intensity of X-ray beam, conventional triaxial 

test apparatus cannot be used with X-ray CT for soil testing. A completely different 

new system such as the one at Washington State University (Razavi 2006) is therefore 

needed for real-time soil characterizations during shearing with controlled 

confinement. At present very few such systems are available in the US. In addition, 

suction controlled triaxial tests for unsaturated soils are often time-consuming (2-3 

months/test), which makes its use more expansive. Although possible and having 

many advantages, it is impractical to use the X-ray CT test to characterize real-time 

stress-strain behavior for unsaturated soils. 

 

Digital image correlation (DIC) is another non-contact method to detect local strain of 

soil sample during triaxial testing based on images captured by cameras. DIC 

measures displacements across an object surface based upon the assumption that all 

soils have their own unique textures in the form of different-colored grains and the 

light and shadow formed between adjacent grains when illuminated. These textures 

include numerous small clusters of uniquely colored pixels called subsets and their 
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corresponding gray level variations represent unique mathematical entities that can be 

tracked during a deformation process. Figure 2.22 shows fractions of two images for a 

sand specimen before and after deformation (Rechenmacher and Medina-Cetina, 

2007). By best matching the pixel subsets through minimization of an error measure, 

such as normalized cross correlation (Sutton et al. 2000), subset straining and/or 

rotations can be captured and measured. The pixel subset matching can be intensively 

performed so that nearly full-field displacement information can be obtained. Initially 

DIC displacements are analyzed incrementally from images taken at short time steps 

using a single digital camera at a fixed location which is similar to DIA method. As a 

result, only 2D analysis can be performed. White et al. (2003) presented a DIC 

method for soil volume measurement which used digital images and particle image 

velocimetry analysis for measuring soil deformation. Orteu (2009) and Rechenmacher 

and Medina-Cetina (2007) reported use of 3D-DIC to match pixel subset patterns 

reflected on surfaces of 3D objects in which the 3D object shape is discerned by 

utilizing two obliquely oriented digital cameras as shown in Figure 2.23. Based upon 

the 3D spatial information of the object, 3D displacements between consecutive sets 

of images are computed using the DIC concepts described above. Results indicated 

the vertical and horizontal displacements could be measured to an accuracy of ± 0.02 

mm. However, the DIC method does not have a component to take the refraction into 

considerations and therefore cannot directly be used with the conventional triaxial test 

apparatus for saturated soils to measure the soil volume change. Rechenmacher 

(2006) and Rechenmacher and Medina-Cetina (2007) eliminated the refraction effect 

by carrying out triaxial tests under vacuum confinement without the use of a 

conventional confining cell. As a result, the confining pressure that can be applied is 

limited to one atmosphere. The DIC method was only used to measure local volume 

change (deformation) for a small area of soil specimen and cannot be used to measure 

displacements for the whole soil specimen. 
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Initial image After deformation

 
Figure 2.22 DIC pixel subset matching  

 

 
Figure 2.23 Configuration of the 3D DIC method (Orteu 2009)  

 

In a summary, according to the above discussions, at present there is no simple and 

cost-effective method to accurately measure the total and local volume change for 

unsaturated soil specimen during triaxial testing. There is a great need for research in 

this area.  

 

HIGH SUCTION TENSIOMETER 

 

At present most researchers use suction-controlled consolidated drained tests to 

characterize constitutive behavior for unsaturated soils. This type of tests normally is 

very time-consuming due to the low permeability of unsaturated soils, especially at 

the high suction range. For example, it took Sivakumar (1993) 959 days to complete 

30 suction-controlled consolidated drained tests for compacted speswhite kaolin. It 
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took Sharma (1998) 801 days to complete 20 suction-controlled isotropic consolidated 

drained tests for two compacted expansive soils. Different from the existing research, 

this research uses the undrained test to characterize constitutive behavior for 

unsaturated soils. In the past few decades, a great effort has been dedicated to measure 

the matric suction of unsaturated soils. Reviews of conventional suction measurement 

methods on unsaturated soil can be found in Fredlund and Rahardjo (1993), Ridley 

and Burland (1993), and Rahardjo and Leong (2010).  High-suction tensiometers were 

considered to be most suitable for measuring suction changes during triaxial testing. 

A literature review on matric suction measurement by using tensiometers is presented 

as follows.  

 

Principle of High-suction Measurement 

 

Basically, the theory of suction measurement by using tensiometers is based on the 

tensile strength of water. As addressed in Guan and Fredlund (1997), the tensile 

strength is defined as the stress of a liquid at which the liquid ruptures or cavitates. 

Cavitation starts as vapor bubbles begin to form in water which is triggered at gaseous 

or other hydrophobic surfaces. The vapor bubbles are commonly referred as potential 

cavitation nuclei. Water usually cavitates when the hydrostatic pressure is close to the 

vapor pressure. However, if the radii of cavitation nuclei are sufficiently reduced, 

water will have the ability to sustain a high tension without cavitation. As can be seen 

in Figure 2.24, due to the surface tension of water, there is a raise of water level in the 

glass tube which is referred as capillary behavior. Water underneath the meniscus and 

above the water level in the tank is under tensile strength which can be determined 

through Equation 2.1. Thus, if the radius of the glass tube is reduced to a very small 

value, water in the tube can sustained a very high tensile strength based on Equation 

2.1.  

 

2 s
w

TS
r

=              (2.1)  

 

where,  

wS   =  tensile strength of water, 
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  =  surface tension of water, and  

  =   radius of the glass tube. 

 
Figure 2.24 Tensile strength of water 

 

Knapp et al. (1970) reported a maximum attainable tensile strength in water ranged 

approximately from 1.3 to 27 MPa. Zheng et al. (1991) detected a tensile stress of 140 

MPa, which is believed to be very close to the maximal tension that water can hold, in 

a single crystal of water.  

 

Existing High-suction Tensiometers 

 

For conventional tensiometers, negative pressure measurement is limited to 

approximately -90 kPa due to the cavitation of water in the tensiometer (Fredlund and 

Rahardjo 1993). So, the application for conventional tensiometers is limited to be 

used on unsaturated soils with low matric suction (less than 100 kPa). The first 

attempt to direct measurement on soil suction higher than 100 kPa was achieved by 

Ridley and Burland (1993) in Imperial College.  It was found that during the use of 

pressure plate for suction measurement of a Kaolin sample, a water pressure ranging 

from -100 to -300 kPa was detected by a reservoir transducer after an instant 

reduction of the air pressure in the chamber to an atmospheric level. This 

phenomenon was also found during the measurement of pore water pressure of a 

saturated soil specimen (equilibrium pore water pressure of 20 kPa) under stress path 

with a confining pressure of 400 kPa by using pore water pressure sensor PDCR 81. 
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Under undrained condition, when the confining pressure was released relatively 

slowly to atmospheric pressure, a reduction in probe pressure was also detected and 

stabilized at -365 kPa. The high negative pressure in the probe slightly decreased and 

maintained for about two hours before jump to -100 kPa. Inspired by this 

phenomenon, by replacing the porous stone of PDCR 81 with a 15 bar ceramic disc, a 

new suction probe for measuring matric suction of unsaturated soil was developed 

which could reach a negative pore water pressure as high as 1370 kPa. However, the 

high mortality of the PDCR 81 due to seal between the silicon diaphragm and the 

underneath Pyrex cylinder forced the author to use a pressure transducer with a strong 

joint which is Entran EPX-500 as a replacement. After trying several designs, a new 

high-suction tensiometer was developed which is shown in Figures 2.25 and 2.26. A 

15 bar air-entry value ceramic disc with housing was sealed to the transducer. The 

diaphragm of the pressure transducer responds to the pressure applied. Beneath the 

ceramic disc, the thickness of the water reservoir was minimized to 0.1 mm. This new 

tensiometer could give a reliable measurement up to -1500 kPa with a response time 

within five minutes. Beside this, a special saturation device was also designed and 

fabricated as shown in Figure 2.27 in which a 19 bar pressure was applied. The 

tensiometer was mounted in a hole at the center of a plinth and rested on a soft spring, 

with the porous stone facing upwards and slightly proud of the plinth as shown in 

Figure 2.28. After saturation, soil specimen was then placed on the plate. Due to the 

presence of spring, tensiometer would move downward as a result of the weight of the 

sample. In this way, a good contact between the soil specimen and the tensiometer 

could be ensured. 
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Figure 2.25 Schematic plot of the tensiometer developed by  

Ridley and Burland (1993) 

 

 
Figure 2.26 Tensiometer developed by Ridley and Burland (1993) 

 

 
Figure 2.27 Tensiometer saturation device (Ridley and Burland 1993) 

 



30 

 

 
Figure 2.28 Inside of the tensiometer saturation device 

 (Ridley and Burland 1993) 

 

However, due to the thread-type transducers were used by Ridley and Burland 1993, 

it was difficult to saturate the tensiometer. Also, the surfaces of the threads may 

constitute an important source of potential cavitation nuclei (Guan 1996). Since 1993, 

more of these high suction tensiometers have been developed and successfully used in 

laboratory and field experiments. In University of Saskatchewan, Guan and Fredlund 

(1997) reported the development of a tensiometer (Figure 2.29) based on a pressure 

transducer (150 bar, without thread) manufactured by Entran Devices, Inc., Fairfield, 

USA (Model EPN-0762AI*- I50SY) instead of using a thread-type transducers. The 

pressure transducer diaphragm is 7 mm in diameter. The transducer and housing were 

assembled under water to leave a water-saturated chamber with a clearance between 

transducer and ceramic disk of 0.1–0.5 mm which could reduce the time needed for 

the saturation process. Also, a saturation cup for this tensiometer, in which a pressure 

up to 150 bar can be applied, was fabricated as shown in Figure 2.30. By apply six 

cycles of -85 to 12000 kPa pressure, the tensiometer was saturated and could be used 

to measure the matric suction of clay soil up to -1250 kPa.  
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Figure 2.29 Tensiometer developed by Guan and Fredlund (1997) 

 

 
Figure 2.30 Tensiometer and saturation cup by Guan (1996) 
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Meilani et al. (2002) presented the development of a tensiometer (Figure 2.31) based 

on PDCR 81 pressure transducer. A 5 bar air entry ceramic disc thinned to 1 mm was 

used to reduce the long response time introduced by using high air entry ceramic disc. 

By applying a pressure of 800 kPa for four days, the tensiometer can then be 

saturated. Then, the tensiometer can be used to measure matric suction of unsaturated 

soil up to -400 to -500 kPa. Similar designs can also be found for tensiometers 

developed by Tarantino and Mongiovi (2002) as shown in Figure 2.32, Take and 

Bolton (2003) as shown in Figure 2.33 based on an Entran EPB stainless steel 

diaphragm pressure transducer and Lourenco et al. (2006) as shown in Figure 2.34. 

For all these tensiometers, a similar structure could be found which comprises (1) a 

pressure transducer for pressure measurement, (2) a high air entry disc to prevent 

tensiometer cavitation at low suction, (3) a water reservoir to generate a negative 

water pressure which can be detected by the pressure transducer. Differences among 

the tensiometers are mostly related to the dimensions, materials used and sealing 

characteristics. 
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Figure 2.31 Tensiometer developed by Meilani et al. (2002) 
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Figure 2.32 Tensiometer developed by Tarantino and Mongiovi (2002) 
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Figure 2.33 Tensiometer developed by Take and Bolton (2002) 
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Figure 2.34 Tensiometer developed by Lourenco et al. (2002) 

 

 

 

CONSTITUTIVE MODELING OF UNSATURATED SOILS 
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Early researchers attempted to extend the effective stress principle for saturated soils 

into the research on unsaturated soils (Bishop et al. 1960; Aitchison and Donald 1956; 

Aitchison 1961; Jennings and Burland 1962; Matyas and Radhakrishna 1968). The 

difficulty in finding a single equivalent effective stress to explain unsaturated soil 

behavior, has progressively resulted in the adoption of two stress state variables(i.e. 

net normal stress p and matric suction s), as a necessary framework to describe 

unsaturated soil behavior (Fredlund and Morgenstern 1977, Fredlund 1979; Fredlund et al. 

1978; Fredlund and Hasan 1979). Based upon the results from suction controlled 

consolidated drained tests as shown in Figure 2.35, Matyas and Radhakrishna (1968) 

proposed the concept of state surfaces to relate void ratio and degree of saturation to 

two stress state variables p and s. The theoretical and experimental justifications of 

using two independent stress state variables were further reinforced by Fredlund and 

Morgenstern (1977). Based on the concepts of two stress state variables and state 

surfaces, Fredlund and his coworkers developed a comprehensive theoretic 

framework for unsaturated soils (Fredlund and Rahardjo 1993) in which the 

volumetric behavior and shear strength are described entirely separately. The use of 

unique state surfaces to explain unsaturated soil behavior was called the state surface 

approach (SSA) and used extensively by many early researchers (Matyas and 

Radhakrishna 1968; Lloret and Alonso 1980; Lloret and Alonso 1985; Fredlund and Hasan 

1979; Fredlund and Rahardjo 1993). The SSA is essentially an elastic analysis of 

unsaturated soil behavior (Alonso et al. 1987, 1990; Wheeler 1996). 
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(a) Constant suction compression curve 

 
(b) Plot of (a) on the e-s plane 
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(c) Three dimensional plots of the results 

Figure 2.35 Experimental tests establishing the concept of state surface  

(Matyas and Radhakrishna 1968) 
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However, unsaturated soils often demonstrate irrecoverable behavior, which cannot 

be explained by the SSA. Furthermore, long experience with both saturated and 

unsaturated soil has emphasized the important link between volume change and 

shearing (Alonso et al. 1987, 1990; Wheeler 1996). The weaknesses of the SSA had 

led to many attempts to develop generalized elasto-plastic critical state constitutive 

models for unsaturated soils in late 1980s. In 1990, Alonso et al. (1990) proposed the 

first EP model for unsaturated soils, which was later called the BBM (Alonso et al. 

1999). The most important feature of the BBM was the introduction of an LC yield 

curve in the p-s plane on which the yield stress increases with the increase of suction, 

as shown in Figures 2.36a and 2.36b. The model was then extended to triaxial stress 

states by assuming elliptical yield curves at constant suctions in the q-p-s stress space 

as shown in Figure 2.36c. Figures 2.36a through 36c show the stress paths (straight 

lines with arrows) proposed by Alonso et al. (1990) to determine the model 

parameters for the BBM, which are suction-controlled isotropic compression tests, 

constant load drying-wetting tests, and suction-controlled triaxial shear tests, 

respectively. In such tests, only one stress variable, either p (Figure 2.36a) or s (Figure 

2.36b) or shear stress q (Figure 2.36c), is changed, while the other stress variables 

remain unchanged in order to eliminate the hydro-mechanical coupling effects of 

unsaturated soils and make the test results easy to analyze. These stress paths are 

propounded according to the principle of divide-and-conquer approach and are typical 

in the characterization of unsaturated soil behavior although other similar stress paths 

were also used (Alonso et al. 1994; 1999; Wheeler 1996; Wheeler and Sivakumar 

1995; Cui and Delage 1996; Sharma 1998; Hoyos 1998).  

 

  

(a) SCTX/ISC(vary p only);    (b) SWCC (vary s only);   (c) SCTX/TS (vary q only) 

Figure 2.36 Suggested stress paths to determine model parameters for the BBM 
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Typical isotropic compression tests are shown in Figure 2.37. Alonso et al. (1990) 

suggested Equations 2.2 and 2.3 for the elastic and plastic variations of specific 

volume, v = 1+e at constant p, respectively. 

 

 
Figure 2.37 Typical isotropic compression tests 
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Figure 2.38 shows the results for drying-wetting tests from some soils. Alonso et al. 

(1990) proposed the following equations (Equations 2.6 and 2.7) to simulate the 

irrecoverable strains induced by suction increase at constant p. 

 



39 

 

e
s

at

dsdv
s p

κ= −
+

 (2.6) 

s
at

dsdv
s p

λ= −
+
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Figure 2.38 Drying-wetting test results ( 0s s= = constant) 

 

Figure 2.39 shows the results for wetting collapse tests from some soils. This 

phenomenon was modeled by selection the N(s) and λ(s) as shown in Equations 2.4 

and 2.5. 

 

 
Figure 2.39 Wetting collapse tests 
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Figure 2.40 Idealized results for weting collapse of a soil 

 

The yield curves as shown in Figure 2.36 therefore have the following expressions: 

 

 (2.8) 

  (2.9) 

 

The model was then extended to triaxial stress states by assuming elliptical yield 

curves at constant suctions in the q-p-s stress space. The yield surface as shown in 

Figure 2.41 has the following expression:  
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Figure 2.41 Yield surface in the p-q-s space in the BBM 

 

The elastic deviatoric strain is calculated using the following equations: 

 

1
3

e
sd G dqε  =  

 
 (2.11) 

 

By assuming a non-associated flow rule, the plastic deviatoric strain using the 

following equation:  
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   (Non-associated flow rule) (2.12) 

 

The following hardening laws are used to calculate the plastic volumetric strains. 
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The BBM successfully explained many features of unsaturated soils and received 

extensive acceptance. Since then many EP models have been developed (Alonso et al. 

1994; 1999; Wheeler 1996; Wheeler and Sivakumar 1995; Cui and Delage 1996; 

Wheeler et al. 2003; Gallipoli et al. 2003; Sheng et al. 2004; 2008; Sanchez et al. 

2005; Sun et al. 2008). Review of these EP models for unsaturated soils can be found 

in Delage and Graham (1995), Gens (1995), Wheeler and Karube (1995), Vanuat 

(2004), and Gens et al. (2006). Sheng et al. (2004) concluded that, from the EP theory 

point of view, all existing EP models have a similar framework and can be considered 

variants of the BBM. Gens et al. (2006) also considered that most existing EP models 

kept the same core of basic assumptions in the BBM, and sought to improve some of 

the limitations in the BBM as follows: 

  

1. Overcome the difficulties in the transition between unsaturated and saturated 

states by using alternative stress variables [11, 47, 51, 58]. Some researchers used 

stress variables other than net normal stress and matric suction (such as Bishop’s 

stress with χ = Sr) to realize a smooth transition between unsaturated and 

saturated states. However, this makes the representation of the stress paths more 

complex or impossible since data on water content is often not available or 

unreliable [12]. 

 

2. Develop a coupled hydraulic model which can consider the coupling between the 

mechanical and hydraulic behavior. Wheeler and Sivakumar [44] first pointed out 

that the BBM cannot be used to predict undrained conditions since there is no 

relationship was developed to describe the EP variations of the water phase. 

Wheeler [40] and Dangla et al. [46] were the first researchers who included 

hydraulic components in their constitutive models for unsaturated soils. Vaunat et 

al. [49] presented the first full attempt to couple hydraulic behavior with a 

mechanical model for unsaturated soils. This approach has been extensively used 

by many other researchers [11, 50, 56, 59-62], and is able to predict the 

irreversible change of degree of saturation during cyclic wetting and drying. 

Zhang and Lytton [70] however found that the proposed approach fails when the 

soil is subjected to an undrained loading-unloading process.  
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3. Development of constitutive models for unsaturated expansive soils. The BBM 

was developed for collapsible soils and slightly expansive soils [9]. It has 

limitations in modeling the behavior of highly expansive soils [41-43], 

particularly the dependency of swelling strains and swelling pressures on the 

initial state [71] and on the stress path [72] as well as strain accumulation during 

suction cycles [73-74]. Gens and Alonso [41] presented a conceptual basis for a 

model for expansive soils, which was improved by Alonso et al. [42]. Alonso et 

al. [43] suggested further improvements, and the revised version is called the 

Barcelona Expansive Model (BExM). Recently, Sanchez et al. [63] developed a 

formulation based on generalized plasticity concepts while keeping the same basic 

features and assumptions in the BExM. Zhang and Lytton [14-15] pointed out that 

shapes of yield curves are closely related to the soil behavior under isotropic 

conditions and the existence of the SI and SD curves in the BExM has not been 

experimentally verified. In addition, many researchers reported that compacted 

soil demonstrated expansive soil behavior under low confining pressure and 

collapsible soil behavior under high confining pressures [25-26]. It is therefore 

important to explain both expansive and collapsible soil behavior in a unified 

model. However, the BBM and BexM are vastly different.  

 

4. Inclusion of non-mechanical (such as thermal variable on the stress-strain 

behavior for unsaturated soils [75-81]. This is mainly attributed to the fact that 

expansive clays are now widely used as waste-isolation barriers in the deep 

nuclear waste disposal technology, which is most viable means of disposing of 

high-level energy- or defense- radioactive waste [82].  

 

None of the above problems have been solved. Of the four problems listed above, the 

second problem is most critical as the effect of load application is often idealized into 

two processes [83]: undrained loading and dissipation of excess pore water pressure 

(or suction). Solving the undrained conditions must precede the dissipation of excess 

pore water pressure (or suction). Without ability to predict undrained conditions, the 

existing models cannot be used for engineering purpose [68]. The forth problem is a 

coupled thermo-hydro-mechanical stress (THM) problem which cannot be solved 

before the first three problems are solved.  
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In recent years, some researchers worked on the renewal of the Bishop's effective 

stress [84-85]. For example, recent work by Lu [84] shows that matric suction is not a 

stress variable. Khalili et al. [85] argued that the Bishop's effective stress in fact can 

explain those experimental results if EP behaviors are recognized. Regardless of these 

arguments, the BBM [9] is also well-accepted by researchers who used the Bishop-

type effective stress for the constitutive modeling purpose [11, 12, 54-56, 58-60, 65, 

85] and results from the SCTX tests are unanimously used for development and 

verifications of constitutive models for unsaturated soils (e.g. [84, 85]). This might be 

the reason why in the state-of-the-art report [8], it is suggested that the BBM should 

be considered as a canon of unsaturated soil mechanics.  
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CHAPTER III 

 

DEVELOPMENT OF A NEW VOLUME MEASUREMENT METHOD  

 

GENERAL 

 

In the past few decades, several methods such as local strain measurement, double 

cell, digital image and laser profiling have been developed to measure the volume 

change of soil specimen during triaxial test. All these methods have their limitations. 

Till now, measuring the volume change of unsaturated soil is still a great challenge 

for researchers. In this study, an optical method was developed to reconstruct 3D 

model of unsaturated soil specimen during testing. For this method, the conventional 

triaxial test apparatus for saturated soils can be used without any modification. This 

was achieved by integrating photogrammetry, optical-ray tracing, and least-square 

optimization to reconstruct 3D model for unsaturated soil specimen during testing. 

The following sections introduce the proposed method and two proof-of-concept 

validation tests.  

 

General principles applied in this method are discussed in details which included 

camera calibration, orientation and refraction correction for three dimensional (3D) 

coordinates computation. To apply this method, camera was calibrated first to 

determine the interior orientation parameters. Then, based on photogrammetry, soil 

specimen as well as the acrylic cell was imaged for the determination of the geometric 

properties of acrylic cell. After this, 3D coordinates of object in water can be 

estimated by using least square method with help of refraction correction. With this 

method, quantitative 3D measurement is possible. A method validation on a stainless 

steel cylinder and a case study on soil specimens were also performed and test results 

by using this method are presented as well. 

 

 

 

 

PRINCIPLE OF PHOTOGRAMMETRY 
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Photogrammetry is a method to determine the 3D coordinates of points on an object 

using photographic images taken from different orientations. As a non-contact 3D 

measurement technique, photogrammetry is widely used in different fields, such as 

topographic mapping, architecture, engineering, manufacturing, quality control, and 

geology. Its principle can be described by using a stereopair as shown in Figure 3.1. 

In photogrammetry, ideal pinhole camera model was adopted. Images taken from 

different positions are different for the same object (Figure 3.1a). The differences can 

be used to calculate the orientations of the camera from where the images are taken 

(orientation process). Usually, for a specified image (Figure 3.2a), the upper left 

corner was set as the origin of the 2D pixel coordinate system. Pixel position (mo, no) 

of a certain point in this image were identified and converted to (xe, ye) on its 2D 

image coordinate system (Figure 3.2b) by using Equation 12. In this image coordinate 

system, principal point was set as the origin of the coordinate system. For a single 

image, a local 3D coordinate system can be built as shown in Figure 3.2d. Origin of 

the coordinate system is set at the perspective center of the camera. Imagine the object 

has a coordinate system in which the XY plane lies on the imaging surface and the Z 

axis lies along the optical axis of the camera. In this local coordinate system, the 

coordinates of the object on the image plane can be expressed as (xo, yo, -f).  

 

Figure 3.1 Principle of the Photogrammetry 

 

 



47 

 

m (pixels)

n (pixels)

o

N

M

Image Plane

no

mo

(mo, no)

x (mm)

y (mm)

o
Fx / 2- Fx / 2

- Fy / 2

Fy / 2
(xe, ye)

xe

ye

S
(xe, ye, -f )f Principal Point

Optical Ray

Object 
Point

U

VW

(a) (b)

(c)

( ), , , ,s s sX Y Z κ ω ϕ

X

Z

Y

2. Phi

3. Kappa

Global Coordinate System

(d)

(x, y, z)

1. Omega

Figure 3.2 Coordinate systems: (a) Pixel coordinate system; (b) Image coordinate 

system; (c) Global coordinate system; (d) Local coordinate system 
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   (3.1) 

 

where, 

,e ex y  =  image coordinates in x and y directions, 
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,o om n  =  pixel coordinates in x and y directions, 

,M N   =  total pixel numbers in x and y directions, 

,x yF F  =  format size in x and y directions, and 

,x yP P  =  principal point value in x and y directions. 

 

Usually, this local coordinate system is required to be converted to the global 

coordinate system as shown in Figure 3.2c with an origin difference of ( ), , 's s sX Y Z  

and rotational angles of ( ), , 'κ ω ϕ . The 3D coordinates and directional angles in the 

global coordinate system can be determined as ( ), , 's s sX Y Z  and directional angles of

( ), , 'κ ω ϕ . Then, in the global coordinate system, the 3D coordinates of the point of 

interest on the image plane can be calculated through Equation 3.2. 

 

1 2 3

1 2 3

1 2 3

e s

e s

s

a a a x Xx
y b b b y Y
z c c c f Z

     
      = +     

      −      

      (3.2) 

 

where, 

1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

 
 
 
 
 

 = rotation matrix which can be determined from Equation 3.3. 
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1 2 3

1 2 3

cos cos sin sin cos cos sin sin sin sin cos cos
cos sin cos cos sin sin sin sin cos sin sin cos

sin sin cos cos cos

a a a
b b b
c c c

ϕ κ ω ϕ κ ω κ ω κ ϕ ω κ
ϕ κ ω κ ω ϕ κ ϕ ω κ ω κ

ϕ ω ϕ ω ϕ

+ −   
   = − − +   

   −  

   (3.3) 

 

Thus, for the point of interest on an image plane, the directional unit vector of the 

traced optical ray is obtained and shown in Equation 3.4 with a start point of

( ), , 's s sX Y Z . So, the function for the traced optical ray ( ), , 'a a ai α β γ=


in the global 

coordinate system can be written as Equation 3.5. 

 



49 

 

( ) ( ) ( )2 2 2

1a s

a s

s s sa s

x X
i y Y

x X y Y z Z z Z

α
β
γ

−   
   = = −   

− + − + −   −   


  (3.4) 

 

s s s

a a a

x X y Y z Z
α β γ
− − −

= =     (3.5) 

 

As can be seen in Figure 3.1b, for a single object point “O”, its projection on the left 

and right image are “o” and “ 'o ”. Vectors l rS S


, lS o


 and 'rS o


 are in the same plane. 

So, a nonlinear equation (coplanarity equation in Photogrammetry) was obtained 

which is shown in Equation 3.6.  

 

( ') ' ' ' ' ' ' 0
' ' '

s s s

l r l r s s s s s s

X Y Z
S S S o S o U V W X VW UV Z U Y W X V W UY W U VZ

U V W
× = = + + − − − =

  
   (3.6) 

 

To determine the orientation of the two cameras, the 3D coordinates of the principle 

point for camera station on the left can be set as (0,0,0) with rotation angle of (0,0,0). 

The six unknown parameters for the other camera station need to be identified which 

are coordinates of perspective center (Xs, Ys, Zs) as well as three Euler angles ( , ,κ ω ϕ ) 

of right camera. Any one of Xs, Ys, Zs can be set as given value which specified the 

scale for the object coordinate system. For the left five unknowns, theoretically, five 

corresponding optical rays are sufficient to yield a finite number of solutions. Since 

there are numerous pairs (far more than five) of corresponding points on the two 

images, the redundancy in information can be used to perform an optimization 

analysis to accurately determine the camera orientation so that the errors in 

measurement are minimal. In addition, multiple images can be taken from different 

orientations with sufficient overlap, which can provide more redundant equations, to 

improve the accuracy of the result. Once the camera orientations are determined, for a 

point of interest, optical rays can be constructed from the perspective centers of the 

cameras through image plane to the point on the object which is so-called “forward 

intersection”. The forward intersection process is performed by using Equation 3.6 

(collinearity equations). For each corresponding point in a stereopair, four collinearity 
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equations were available. Any three of those equations can be used to determine the 

3D coordinates of the point in object coordinate system. 

 

1 1 1

3 3 3

2 2 2

3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

s s s

s s s

s s s

s s s

a X X b Y Y c Z Zx f
a X X b Y Y c Z Z
a X X b Y Y c Z Zy f
a X X b Y Y c Z Z

− + − + − = − − + − + −
 − + − + − = −
 − + − + −

                      (3.7) 

 

As a noncontact 3D measurement technique, photogrammetry is used in different 

fields for more than 160 years and proven to be able to provide measurements with 

high accuracy. However, for volume measurement on unsaturated soil, due to the 

refraction at the interfaces of air-chamber and chamber-water, light is bended which 

cause image point shift in the image plane as shown in Figure 2.2. Therefore, 

collinearity condition is disturbed and photogrammetry is no longer suitable for 

measuring the soil specimen in the acrylic confining chamber during triaxial testing. 

Therefore, for the proposed method, photogrammetry is used to determine camera 

orientations and shape and location of the confining acrylic chamber. 3D coordinates 

of object in water cannot be directly determined through triangulation due to 

refraction. However, although the optical rays bended when reached the two 

refraction interface (air to acrylic cell and acrylic cell to water), rays still can be traced 

based on Snell’s law which is discussed in details as follows.  

 

OPTICAL-RAY TRACING TECHNIQUE 

 

Optical-ray tracing technique is proposed to take into account the effect of the 

refraction. It is well known that the refraction of optical ray at the interface of 

different media follows Snell’s law as shown in Figure 3.3 and Equation 3.8.        
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Figure 3.3 Snell’s law 

 

                                    (3.8) 

 

where, 

 =   refraction index, and  

 =   incident angle and refraction angle. 

 

As can be seen in Figure 3.3, direction vectors of incident and refracted rays are and 

. The direction change of optical ray after refraction follows Snell’s law. The 

refracted ray  can be split into a tangent and normal part which is shown in Equation 

3.9. Same split can be applied to incident ray , Equations 3.10 and 3.11 can be 

drawn. Because of Snell’s law, the tangent part of the refracted ray can be obtained as 

shown in Equation 3.11. Since  and are parallel and point in the same direction, 

Equation 3.13 can be obtained based on Equation 3.12.  

 

            (3.9) 

                                           (3.10) 
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Then,  
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n n n

α α
   = + − −    

  
                                                          (3.15) 

 

As can be seen in Equation 3.15, as long as the incident ray, normal vector of the 

refractive surface, and the refractive indices of the two media are given, the optical 

ray after refraction can be determined which is referred as optical-ray tracing in this 

paper. 

 

PROPOSED METHOD 

 

With the development of image sensors, qualities of digital photographs for 

photogrammetry are getting better in resolution which would bring better accuracy for 

3D geometry measurement. The procedures of the proposed optical method are as 

follows: (1) Camera calibration; (2) Testing system setup (post measurement targets 

on the acrylic cell wall, test specimen, and the load frame); (2) Image capturing and 

orientation; (3) 3D reconstruction of the acrylic cell wall; (4) Optical-ray tracing; and 

(5) Least square estimation for the determination of 3D coordinates. For this method, 

images can be captured at any orientation to obtain best quality and accuracy. Also, 

each image represents one measurement and as many images as possible can be used. 

The proposed optical method in this study is considered as an improved version of 

DIA. None of the assumptions used in Macari et al. (1997)’s method is needed.  
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Camera Calibration 

 

As discussed before, an ideal pinhole camera model was used for illustration of 

principle of photogrammetry. The ideal pinhole camera model does not include 

geometric distortions caused by lenses. A perfect lens would render straight lines as 

straight as shown in Figure 3.4a. However, in this real world, most practical lenses 

aren’t that good, though, and instead bend lines outwards (barrel distortion as shown 

in Figure 3.4b) or inwards (pincushion distortion as shown in Figure 3.4c). Wide-

angle and wide-range zoom lenses often suffer particularly badly from these 

distortions. Also, for all practical lenses, different from pinhole camera, multiple 

lenses are used to focus light. In addition, principal distance, principal point and 

format size of the image sensor are unknowns. Thus, before photogrammetric 

analysis, camera used for image capturing should be calibrated first to determine the 

characteristics of a camera so it can be used as an ideal pinhole camera to extract 

precise and reliable 3D geometric information from images. 

 

            
(a) No distortion                (b) Barrel distortion              (c) Pincushion distortion 

Figure 3.4 Lens distortion 

 

Accurate camera calibration is a necessary prerequisite for the extraction of precise 

and reliable 3D metric information from images. The algorithms are generally based 

on ideal pinhole camera model, with the most popular approach being the well-known 

self-calibrating bundle adjustment (Triggs et al. 2000), which was first introduced to 

close-range photogrammetry in the early 1970s. Usually, the calibration was done by 

taking pictures of a calibration target which geometry is known. The evaluation 

algorithm calculates the intrinsic parameters (focal length, principle point, distortion 
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parameters) for each camera, the extrinsic parameters (translation vector and rotation 

matrix) as well as the uncertainties of the calibration parameters, resulting from the 

deviations of the detected markers from the model positions. In this study, the 

calibration process involved placing a calibration target (Figure 3.5) in the field of 

view, and collecting 12 images of the target at different camera orientations. From 

these images, various system parameters (e.g., actual focal length f, pixel numbers M 

and N, image sensor format size Fx and Fy, principal point Px and Py, radial lens 

distortion parameters K1 and K2 and decentering lens distortion parameters P1 and P2) 

were extracted. Usually, camera is suggested to be recalibrated after being used for a 

certain time. Table 3.1 presents the calibration results for camera with same lens 

before and after being used for a certain time. 

 

 
Figure 3.5 Calibration targets (from Photomodeler) 

 

Due to the lens distortion, camera cannot be treated as a pinhole camera and images 

captured cannot be directly used for refraction correction. However, images can be 

idealized based on calibration results to eliminate the lens distortion. As can be seen 

in Equation 3.15, corrected image point coordinates can determined based on its 

original image coordinates, radial lens distortion component (Equation 3.16) and 

decentering lens distortion component (Equation 3.17). After idealization, lens 

distortion was eliminated, principal point was centered and a new group of calibration 

parameters with no distortion parameters were generated as well. Then, ideal pinhole 

camera model can be applied for images after idealization.  
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c x x

c y y

x x r d
y y r d

= + +
= + +

          (3.15) 

 

where, 

,x y    =  image coordinates in x and y directions, 

,c cx y  =   corrected image point coordinates in x and y directions, 

,x yr r  =  radial lens distortion correction in x and y directions (Equation 3.16), 

and  

,x yd d  =  decentering lens distortion correction in x and y directions (Equation 

3.17). 
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       (3.17) 

 

where, 

1 2,K K    =  radial lens distortion parameters and 

1 2,P P  =   decentering lens distortion parameters. 

 

Triaxial System Setup  

 

In order to perform the volume change measurement on unsaturated soil specimen 

during triaxial testing by this optical method, some setup on the triaxial test apparatus 

were required to be done before measurement. The setup included posting 

measurement targets on specimen surface (Figure 3.6a), posting measurement targets 

on acrylic cell wall (Figure 3.6b), and posting measurement targets on load frame 

(Figure 3.6c). Measurement targets on the load frame were used to set up the global 
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coordinate system so that all the measurements can be compared in the same 

coordinate system. Measurement targets on the cell wall were used to reconstruct the 

3D position and shape of the cell. Measurement targets on the specimen surface were 

used to monitor the deformation of the soil specimen during loading.  

 

  
(a) Measurement targets on specimen       (b) Measurement targets on cell wall 

 
(c) Measurement targets on load frame 

Figure 3.6 Testing system setup  
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Image Capturing and Orientation 

 

Images can be captured from any orientations following the pattern in Figure 3.7. 

Camera stations that are “far away” from the testing system were used to capture 

images covered the load frame as shown in Figure 3.6c. Camera stations around the 

testing system in a circle were used to capture images only covered the acrylic cell 

with specimen inside. Better results were achieved by taking more than three 

photographs for each area/point of interest. For each test mentioned above, images 

capturing at different camera stations as shown in Figure 3.7 would took about 2 

minutes. 

 

Camera Station

Measurement Targets 
on Load Frame

Measurement Targets 
on Cell Wall

  
Figure 3.7 Typical camera stations  

 

After photographing, images obtained were processed for orientations. The images 

were first idealized by using the camera calibration parameters to eliminate the lens 

distortions. Corresponding targets in different images were then used to determine the 

orientations of the photographs based upon the principle of photogrammetry. Only the 

targets on the load frame and the outside surface of the acrylic cell wall were used to 
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meet the requirement of the photogrammetry. Measurement targets on specimen 

surface cannot be used to determine the image orientation because of the distortion 

introduced by refraction. 

 

3D Reconstruction of Acrylic Cell 

 

Using the orientations of the photographs, the coordinates of the targets on the outside 

surface of the confining chamber were calculated according to the photogrammetry. 

These 3D coordinates defined the shape and position of the confining chamber in the 

global coordinate system. Experimental results indicated that the acrylic confining 

chamber could expand to a barrel-shape due to the applied water pressure as shown in 

Figure 3.8. As a result, similar to the distortion in radial direction, there were also 

magnification effects in the vertical direction. If a cylindrical shape is used to best-fit 

a barrel-shaped acrylic confining chamber, the error in the vertical direction can be as 

high as 0.2 mm even if the proposed method was used which is not tolerable.  

Center Line

X

Y

Z

o

Initial

Under pressure

 
Figure 3.8 Deformation of confining chamber under pressure 

 

Since the shape of the acrylic cell was known as cylindrical or barrel-shaped, 

Equations can be used to represent the call wall. The regression to determine the 

function of the outside surface of the cell wall was divided in two steps. First, a cell 

coordinate system was build which is shown in Figure 3.8. In this coordinate system, 

the function for the barrel shaped acrylic cell wall can be expressed as Equation 18. 
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To translate the 3D coordinates of the targets to this cell coordinate system, Equation 

3.19 was used. Second, the converted 3D coordinates can then be used for regression 

by using least square method. After regression process, coefficients A, B, C, as shown 

in Equation 3.18, the center point of the acrylic cell in the global coordinate system 

( ), , 'r r rX Y Z as well as the three directional angles ( )', ', ' 'κ ω ϕ  can be determined.  

 

( )2 2 2X Z AY BY C outside+ = + +        (3.18) 

1 2 3

1 2 3

1 2 3

' ' '

' ' '

' ' '

r

r

r

X a x a y a z X

Y b x b y b z Y

Z c x c y c z Z

 = + + −
 = + + −


= + + −
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' ' '

' ' '

cos 'cos ' sin 'sin 'cos ' cos 'sin ' sin 'sin ' sin 'cos 'cos '
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ϕ κ ω κ ω ϕ κ ϕ ω κ ω κ

ϕ ω ϕ ω ϕ

  + −      = − − +    −    

   

 

Refraction Correction 

 

After 3D reconstruction of the acrylic cell wall, optical rays from cameras to the 

specimen surface can be traced as shown in Figure 3.9. A specimen is located inside 

of the acrylic cell filled with water. Different images were captured for the specimen 

from different orientations (Figure 3.9a). Using camera station S2 as an example, for a 

specific point of interest on specimen surface, its pixel position on the corresponding 

image can be determined. The pixel position would then be to determine the 

corresponding optical ray by using Equations 3.1, 3.2, 3.3, 3.4 and 3.5. Equation 3.5 

was set to be equal to l1 as shown in Equation 3.20, which is the distance between the 

start point and the intersection. With help of Equations 3.18 and 3.19, two solutions 

for l1 can be found. The little one is the correct answer which physically means the 

optical ray intersect with the cell wall for the first time. So, the 3D coordinates for the 

intersection C2 = ( ), , 'o o ox y z can be determined through Equation 21. 
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Figure 3.9 Optical-ray tracing based on Snell’s law 
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The function for the outer surface is known as Equation 3.18. To determine the 

normal vector 1n = ( )1 1 1, , 'n n nα β γ  as shown in Figure 3.9b at the intersection C2, partial 

derivatives for x, y and z for Equation 3.18 was determined as shown in Equations 

3.22 and 3.23.  
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http://dufu.math.ncu.edu.tw/calculus/calculus_bus/node59.html
http://dufu.math.ncu.edu.tw/calculus/calculus_bus/node59.html
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Then, the vector 1r


= ( )1 1 1, , 'r r rα β γ for the optical ray ( ), , 'a a ai α β γ=


after refraction 

can be determined through Snell’s law as shown in Equation 3.24. Since the thickness 

of acrylic cell wall t can be measured before testing, the function for the inside surface 

of the cell wall can be written as Equation 3.25. 
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(3.24) 

( ) ( )2 2 2 22X Z AY BY C t C t inside+ = + + − +      (3.25) 

 

With a new start point C2 = ( ), , 'o o ox y z , the intersection D2 between the refracted 

optical ray 1r


and the inner surface of the acrylic cell wall (Equation 3.25) can be 

determined through the method as addressed before. Also, the refracted optical ray 2r


= ( )2 2 2, , 'r r rα β γ after first refraction can be determined by performing optical-ray 

tracing technique again.  

 

Least Square Optimization 

 

Snell’s law is a theoretical equation and it will give the analytic solution as long as all 

the inputs are correct. Although the photogrammetric method has high accuracy, it is 

expected that there are still some errors in the obtained camera orientations and 

acrylic chamber positions. Consequently, it is very likely for D1P, D2P, and DnP not 

to intersect at the same point P as shown in Figure 3.9a. Instead, after optical ray 

tracing two times as shown in Figure 3.9b, they might be rays D1P’, D2P’, and DnPn’ 

in the 3D space with no intersection as shown in Figure 3.9c. To overcome this 

limitation, a least-square optimization approach is used to best approach the real 
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coordinate of point P. The 3D coordinate of the measurement target P, as shown in 

Figure 3.9c, can be set as ( ), , 'p p px y z . Then, the distance di between the measurement 

target and each optical ray can be determined through Equation 3.26. by finding a 

combination of coordinate (x, y, z) which can minimize the sum of the square of the 

distances from the point to the optical rays as shown in Equation 3.27. At least three 

photographs (measurements) are needed to perform the search. The more photographs 

used, the higher the accuracy is. Photographs are also captured from orientation which 

can provide to obtain the best quality and accuracy. Using this approach, there is no 

need to make assumptions regarding the initial shape, position, and deformation 

patterns of the specimen. 

 

( ) ( ) ( ) ( ) ( ) ( )( )22 2 2

2 2 2i p o p o p o p o r p o r p o rd x x y y z z x x y y z zα β γ= − + − + − − − + − + −   (3.26)
 

                                                                1

n

total i
i

d d
=

= ∑   (3.27)
 

 

METHOD VALIDATION 

 

For this proposed method, to reach a high accuracy, a digital single-lens reflex camera 

with a fixed focal length lens is strongly recommended. In this study, as shown in 

Figure 3.10, Nikon D7000 (pixel solution: 4928 × 3264) with a fixed focal length lens 

(AF-S NIKKOR 50 mm f/1.4G) was adopted for the method validation. In this study, 

camera was calibrated and calibration results are presented in Table 3.1 (calibration 

1). After being used for a while, the camera was calibrated again as shown in Table 

3.2 (calibration 2). 
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Figure 3.10 Camera and lens 
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Table 3.1 Camera calibration parameters 

Parameter 

Calibration 1 Calibration 2 

Before 

Idealization 

After 

Idealization 

Before 

Idealization 

After 

Idealization 

f (mm) 53.3864 53.3864 53.4027 53.4027 

M (pixel) 4928 4928 4928 4928 

N (pixel) 3264 3264 3264 3264 

Fx (mm) 23.9982 24.7439 23.9965 24.7875 

Fy (mm) 15.8961 16.3871 15.8961 16.416 

Px (mm) 12.0865 12.372 12.1016 12.3937 

Py (mm) 8.1022 8.1963 8.1164 8.208 

K1 (10-5) 5.443 0 5.475 0 

K2 (10-9) -2.266 0 -3.751 0 

P1 (10-6) -3.094 0 -4.164 0 

P2 (10-6) 2.023 0 0.7847 0 

 

As can be seen in Table 3.1, the actual focal length of the 50 mm fixed focal length 

lens is 53.3864 and 53.4027 mm from the two calibrations when the camera is treated 

as an ideal pinhole camera model. The principle point is not exactly at the center of 

the image sensor. However, after idealization, lens distortions were eliminated and 

principle point was centered. 

 

Validation on Stainless Steel Cylinder 

 

A stainless steel cylinder (Figure 3.11a) covered with measurement targets was used 

to validate the proposed method accuracy on 3D position and volume measurement. 

Different confining pressure levels ranging from 0 to 600 kPa were applied during 

testing. Elastic modulus of stainless steel ranges from 180 GPa to 200 GPa. With the 

applied maximum confining pressure of 600 kPa in this study, the volumetric strain is 

less than 2×10-6 and the steel cylinder can be considered as rigid. A rigid specimen 

provided a good reference for evaluating measurement accuracy in the validation 

tests. Also, drained triaxial test on a saturated sand specimen (Figure 3.6) was 

performed to validate the volume measurement accuracy by comparing the measured 
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volume change by the proposed method to the actual volume change obtained by 

monitoring the amount of water flow into or out of the saturated sand specimen. 

 

  
(a)                                                                  (b) 

 
(c) 

Figure 3.11 System setup: (a) Stainless steel cylinder with measurement targets; (b) 

Acrylic cell with measurement targets; (c) Load frame setup  

For validation test on the stainless steel cylinder, the conventional ELE triaxial test 

apparatus for saturated soils as shown in Figure 3.11 was used to validate the 
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accuracy on 3D position measurement of the proposed method. The confining acrylic 

chamber, which has been used for years as shown in Figure 3.11b, is 8” in height, 4” 

in outer diameter, and 0.24” in thickness with a refractive index of 1.491. 16 

measurement targets were posted on the load frame to set up the global coordinate 

system so that all the measurements can be compared in the same coordinate system 

as shown in Figure 3.11c. A total of 218 measurement targets were posted to the 

outside surface of the acrylic chamber, which included 2 circles (39 targets/circle) and 

8 vertical stripes (12-25 targets/strip). The stainless steel cylinder in Figure 3.11a was 

used to as a soil specimen with 336 measurement targets (21 targets/circle×16 circle) 

on its surface. Each measurement target was assigned a specific number for future 

identifications and comparisons.  

 

The experimental program included reconstruction and measurements of the 3D 

images of the steel cylinder under the following conditions: 1. exposed in air, 2. 

installed in the triaxial test apparatus with 0 kPa, 200 kPa, 400 kPa, and 600 kPa 

confining pressure. The experiments were performed in the following way: (1) firmly 

fix the stainless steel cylinder on the bottom platen of the triaxial test apparatus 

without the confining chamber; (2) take photographs from different orientations; (3) 

carefully install the confining chamber and slowly fill it with water; (4) take 

photographs from different orientations; (5) increase the confining water pressure to 

200 kPa and take photographs from different orientations; and (6) repeat step (5) with 

the confining water pressures changing to 400 kPa and 600 kPa. Photographs can be 

taken from any orientations following the pattern in Figure 3.7.  

 

Figure 3.12 shows the diameter changes of the smaller ELE triaxial cell (the one with 

steel cylinder inside) under different inside water pressure. When the confining water 

pressure increased from 0 kPa to 600 kPa, the diameter of the confining chamber 

increased from approximately 100.44 mm to 100.60 mm. Assume that the height of 

the confining chamber does not change, for the steel cylinder used (50 mm in 

diameter and 100 mm in height), it caused about 2.5% error in the volumetric strain if 

the expansion of the confining chamber is not taken into account. Note that the above 

tests were performed in about 1 hour. Triaxial tests for unsaturated soils usually take 
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very long time (2-3 months/test). It is therefore expected that the resulted errors will 

be much higher due to creep of the confining chamber under pressure.  
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Figure 3.12 Cell deformation due to applied confining pressure 

 

After the shape and location of the confining chambers were defined, the coordinates 

of the measure targets on sample surface (stainless steel cylinder and saturated sand 

specimen) were calculated using the optical-ray tracing and least square optimization 

techniques as discussed previously. A detailed example on the 3D position calculation 

of a specified measurement target on specimen surface could be found in Appendix A. 

The volumes of the samples were calculated using the AUTOCAD® Civil 3D for all 

the tests.  

 

For the validation test on the stainless steel cylinder, test results were compared under 

the same global coordinate system as shown in Figure 3.13 with the results calculated 

for the steel cylinder when exposed in the air by assuming results for this test were 

“true” values. Table 3.2 shows the 3D coordinates results of the measurement targets 

on sample surface for all the tests which is also shown in Figure 3.14 for the cross 

sections from 1 and 16. No visible difference was found for all the test results. Using 

the global coordinate system as shown in Figure 3.9, measurement errors were also 
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estimated by calculating the displacement of each point “moving” from its position in 

the test exposed in the air to that in other tests when the steel cylinder subjected to 

different confining pressures. It was found that the average displacements (errors) for 

336 targets ranged from 0.056 mm to 0.076 mm with standard deviations varying 

from 0.033 to 0.061mm (Table 3.2). The total volumes of the cylinder varied from 

221.525 cm3 (600 kPa) to 221.813 cm3 (200 kPa), while the corresponding “true” 

value was 222.039 cm3 (in air). The errors ranged from 0.131% to 0.232%. Analysis 

of the test results also indicated that many assumptions used in the Macari et al. 

(1997) cannot be satisfied. For example, without calibration, a commercial camera 

cannot be treated as ideal pinhole camera and it is very difficult to accurately control 

its position through manual installation. The confining chamber can deform under 

pressure and the soil specimen can never be installed at the center of the chamber. 

 

 
Figure 3.13 3D coordinates of the targets on specimen surface 

 

Table 3.2 Measurement accuracy under different confining pressures 

Case 
Displacement (mm) Volume accuracy 

Average  Standard deviation  Volume (cm3) Error (%) 
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In air 0 0 222.039 0 

0 kPa 0.076 0.061 221.749 -0.131 

200 kPa 0.056 0.042 221.813 -0.102 

400 kPa 0.063 0.033 221.766 -0.123 

600 kPa 0.07 0.049 221.525 -0.232 
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     (11)                                                                 (12) 

 
     (13)                                                                 (14) 

 
     (15)                                                                 (16) 

Figure 3.14 3D coordinates comparison for the 16 cross sections 

Validation on Saturated Sand Specimen 
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Beside the test on stainless steel cylinder, a case study by using cylindrical saturated 

sand specimen was conducted under drained conditions as shown in Figure 3.6. In this 

case, the used testing system was still the one for the validation test on stainless steel 

cylinder (ELE triaxial test apparatus). Instead of the 4” by 8” acrylic chamber, a 

brand-new confining acrylic chamber as shown in Figure 3.6b, which is 12” in height, 

6.5” in outer diameter, and 0.38” in thickness with a refractive index of 1.491, was 

used to validate the proposed method on the saturated specimen. A total of 174 

measurement targets were posted to the outside surface of the acrylic chamber, which 

included 2 circles (55 targets/circle) and 4 vertical stripes (16 targets/strip). Oven 

dried standard Ottawa fine sand (0.075 to 0.425 mm) as shown in Figure 3.12 was 

used for specimen preparation. Latex membrane (Figure 3.15) used was pre-gridded. 

A mold lined with this membrane was used to hold the specimen during compaction. 

After compaction, specimen (71 mm × 137 mm) was carefully mounted on the 

pedestal of the triaxial cell as shown in Figure 3.6a. A suction of 50 kPa was applied 

to hold the sand specimen in place during sealing. Then, 176 measurement targets (16 

targets/circle × 11 circles) were posted on the pre-gridded membrane. To ensure that 

the volume change of specimen can be well represented by the movement of those 

measurement targets, two circles of measurement targets were posted on the top cap 

and the pedestal as shown in Figure 3.6a. In this way, the entire specimen was 

covered by the measurement targets. After this, cell chamber was installed and filled 

with tap water (Figure 3.6c). To short the saturation process on the sand specimen, 

carbon dioxide (CO2) was used to seep slowly upward from the bottom of the 

specimen to remove air in sand. Then, de-aired water was allowed to saturate the sand 

specimen from the bottom of the specimen. After this, a back pressure of 400 kPa was 

applied to dissolve all left air and CO2 for several hours. Net confining pressure was 

maintained to be constant at 35 kPa during this saturation process. When a B value 

(0.98 in this case) greater than 0.95 was reached, saturation process was considered to 

be finished. Then, chamber pressure and back pressure can be simultaneously 

decreased to 100 kPa and 0 kPa, respectively. Drained triaxial test was performed 

after this. 
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Figure 3.15 Membrane and sand used for specimen preparation  

 

 For this drained triaxial test, a confining pressure of 100 kPa was used. A loading rate 

of 1 mm/min was applied to generate some volume change of the saturated specimen. 

During loading, drain valve was kept open to allow water flow into or out of the 

specimen. The volume change of the specimen was recorded by monitoring the water 

flow. After a certain displacement, load was paused and drainage valve was closed. 

Then, the image capturing could be performed. In this way, there is no volume change 

on the specimen during image capturing. For each volume measurement by using the 

proposed method, 25 images around the specimen were used. The validation test was 

stopped when a total displacement of 10 mm was reached.  

 

For the validation test on the saturated sand specimen, a comparison between the 

results of actual volume change (monitoring water flow into or out of specimen) and 

the volume measured by proposed method was presented in Table 3.3. Volume 

change detected by proposed method is very close to the actual volume change 

recorded by the amount of water flow into or out of the saturated specimen as shown 

in Figure 3.17. By comparing the differences of the volume changes between these 

two methods, an average and maximum error of 0.065% and 0.11% was obtained, 

respectively. Also, the movement of all the measurement targets on the specimen 

surface, as shown in Figure 3.17, were well recorded which could be used for the 

strain localization analysis. With increase of vertical displacement, cylindrical 

specimen generally turned to barrel shaped. An attempt to perform undrained test by 



74 

 

using saturated sand specimen turned out to be unsuccessful due to the water 

cavitation inside the specimen.  As a result, the measured volume of the saturated 

sand specimen is not a constant. 

 

Table 3.3 Measurement accuracy under shear load 

Displacement (mm) 
Volume Change (cm3) 

Error (%) 
Actual Proposed method 

0 0 0.00 0.000 

2 -0.1 -0.25 -0.029 

4 1.8 2.18 0.073 

6 4.3 4.10 -0.039 

8 7.5 6.94 -0.108 

10 10.4 10.56 0.031 

 

  
Figure 3.16 Comparison of volume change 
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(a) 0 mm                        (b) 2 mm                            (c) 4 mm 

 
(d)6 mm                              (e) 8 mm                            (f) 10 mm 

Figure 3.17 Soil deformations under shear load:  

(a) 0 mm; (b) 2 mm; (c) 4 mm; (d) 6 mm; (e) 8 mm; (f) 10 mm 

 

ERROR SOURCES 

 

As addressed above, this proposed method is in high accuracy in terms of volume 

measurement for triaxial test specimen. The potential error in this method can be 

introduced from all over the testing procedure which is discussed in details as follows. 
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To perform a high accuracy measurement, all of these potential errors should be 

minimized.  

 

1. Camera is clearly a very important part of any photogrammetry measurement. If a 

camera is suitable for photogrammetry measurement depends on several factors. 

Digital single-lens reflex camera with fixed focal length lens is preferred in our 

case. Higher pixel number and larger image sensor would lead to accurate 

measurement.  

 

2. Camera calibration is one of the error sources. Image quality, camera position as 

well as the number of images used can influence the calibration result. And 

different calibration results would definitely produce different 3D measurement 

results. Image idealize is based on the lens distortion parameters, format size and 

perspective center of image sensor. These parameters are all obtained from camera 

calibration. Different lens calibration result could bring different pixel positions of 

measurement targets based on idealized images. Also, camera orientation could be 

affected by camera calibration results due to different focal length and format size. 

In other words, different group of images can bring different calibration result.  

 

3. Different orientation process by using different reference points (targets in this 

study) as well as the number of the reference points can affect orientation results. 

This error can be minimized by using more reference points and more images 

from a variety of angles and distances. 

 

4. An assumption was made for the acrylic cell wall reconstruction process. So, if 

the acrylic cell wall is well represented by the cylindrical or barreled shape 

equation or not will lead to different measurement results. Also, the thickness 

variation of the cell wall is another source of error. In our case, a transparent 

round shape cell wall with uniform thickness is highly recommended. 

 

5. Refractive index of acrylic cell and water are an important factor which can affect 

accuracy of measurement significantly. However, in our case, due to the thickness 

of the acrylic cell is relatively small compared with the optical ray path in water, 
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refractive index of water is more important than that of acrylic cell. Fortunately, 

this refractive index can easily be determined by back-calculation method as 

addressed before. The refractive index of acrylic cell wall can be obtained from 

the testing equipment company or through internet. 

 

6. Marking of the measurement targets can be another source of error. For the same 

target, view from different angles may sometimes result in different pixel position 

for its centroid. Even a stain on cell wall or different light conditions could cause 

misrecognition or inaccurate centroid of the target. To minimize the marking 

error, high quality images with larger depth of field are preferred. So, during 

image capturing, camera was set at low ISO level (100 to 200), small aperture size 

(< F9) and high shutter speed (< 1/160 s) with build-in flash on.  In this way, high 

definition images could be achieved. 

 

7. Least square method for estimation of the 3D coordinates by using least square 

method is the last source of error. Estimation of the 3D coordinates by using 

different number or group of optical rays will also generate different result. 

However, this potential error can be minimized by using more optical rays 

(greater than four is strongly suggested). 

 

DIFFERENCES FROM EXISTING IMAGE BASED METHODS 

 

As mentioned before, some existing methods for volume measurement of unsaturated 

soil during triaxial test are also based image analysis. However, several features of 

this method listed as follows make it different from existing image based methods. 

 

1. Camera used for this method was calibrated to determine the intrinsic parameters 

(focal length, principle point, distortion parameters). Based on calibration 

parameters, lens distortion could be eliminated and idealized images could be 

obtained for further photogrammetric analysis and refraction correction. 

 

2. Photogrammetry was adopted for this method to accurately determine camera 

orientations.  In this way, camera does not need to be mounted on tripod and 
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precisely adjusting for camera position is not required anymore which brings great 

flexibility for image capturing. With this flexibility, for a single measurement 

target on specimen surface, images from different distances and view angles can 

be captured. 

 

3. A scaled 3D coordinate system was built for the measurement. All light rays, 3D 

coordinates of targets, camera positions can be well expressed in same coordinate 

system. Also, volume change and strain localization can be extracted based on the 

3D coordinates of the measurement targets located on the surface of the specimen 

which makes the data analysis easier and comparable. 

 

4. More than one image was used for the measurement of a single target. So, 

measurement error can be significantly reduced which is different from the other 

image based methods. In this study, for a single measurement points, an average 

of 5 images were used for its 3D coordinates estimation by least square method. 

Based on this estimated coordinates, the light rays relatively far from the 

estimated point can be deducted and least square estimation can be redo to reduce 

the estimation error.    

 

5. By conducting forward intersection, 3D coordinates of measurement targets on 

triaxial cell can be accurately determined which is required for determine the 

position and shape of triaxial cell wall. The deformation of the acrylic cell wall 

could be introduced due to applied confining pressure. In this study, diameter 

variation of the acrylic cell wall was well detected under different confining 

pressure levels. A fairly linear relationship can be found between confining 

pressure and diameter of the triaxial cell. Since the position and shape of acrylic 

cell under different confining pressure levels can be well determined, accurate 

measurement on specimen in water became achievable. 

 

6. 3D refraction correction by optical ray tracing technique was used for the 

refraction correction at the interfaces of air to acrylic cell and acrylic cell to water. 

Light rays can be traced from any camera stations. For most existing image based 

methods, 2D refraction correction model developed by Parker (1987) was used. 
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However, in this model, triaxial cell was assumed to be perfectly cylindrical 

without any deformation under applied confining pressure. This refraction 

correction only work when specimen cylinder and triaxial chamber are perfectly 

vertical. In this study, the author tried to vertical the specimen cylinder and 

triaxial cell. However, a small angle (1 to 2o) between the centerline of the triaxial 

cell and specimen cylinder still can be detected. Also, in this 2D refraction 

correction model, the camera needs to be perfectly horizontal and pass through the 

center of the chamber. Since the perspective center is located inside of camera, 

camera position cannot be accurately determined which makes the light rays from 

the camera undetectable. Also, the impact due to the cell deformation cannot be 

accounted in this 2D refraction correction model especially when cell deformed to 

barrel shaped. 

 

7. Those existing image based methods only used one image for 3D position 

determination of the specimen. As we know, only 2D information can be obtained 

from a single image which means the information in depth direction was lost. So, 

for those image based methods, an assumption was made that the specimen 

deformation is perfectly along the radial direction of the specimen to find the lost 

depth information. In this way, the 3D position can be determined. Obviously, this 

radial direction deformation cannot be perfectly satisfied due to imperfect 

specimen and eccentric load. Thus, the measurement results based this method are 

questionable. However, for this proposed image based method, this assumption 

does not exist. For a single measurement point, 3D information can easily be 

found by triangulation based on different images which can also significantly raise 

the measurement accuracy.  

 

 

 

CONCLUSIOINS  

 

In this study, a novel image based method was developed for monitoring volume 

change of unsaturated soil during triaxial test. For this method, photogrammetry, 

optical-ray tracing as well as least square estimation technique was adopted to 
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perform an accurate 3D measurement. Validation tests on a stainless steel cylinder 

under different confining pressure levels and saturated sand specimen under constant 

pressure level were conducted. Based on the validation results, some conclusions 

were drawn which are listed as follows. 

 

1. Refraction correction is a necessary implement for Photogrammetry when used for 

multimedia conditions. For triaxial test, by refraction correction at the interfaces 

(air to acrylic cell and acrylic cell to confining fluid), 3D measurement on testing 

specimen can be applicable. 

 

2. The proposed method is a low cost, real 3D, noncontact and accurate method for 

volume measurement on soil specimen during triaxial testing. No equipment 

modification is needed to perform this method by using traditional triaxial testing 

system for saturated soil. Also, this method can be used for both saturated and 

unsaturated soil. 

 

3. The proposed image based method can be used to detect both total volume change 

and strain localization of soil specimen with great accuracy during triaxial testing 

by posting measurement targets on specimen surface anywhere if interested. 

 

4. The accuracy of this method can be affected by several aspects. However, most of 

these can be minimized or even eliminated. The only error source that cannot be 

minimized came from the triaxial cell wall during refraction correction process. 

The variation of the wall thickness and the representative equations for the acrylic 

cell obtained from regression dominate the overall accuracy of the 3D 

measurement. In other words, for this proposed method, measurement accuracy 

could vary when using different acrylic cell. So, a clean transparent cylindrical 

shape cell wall with uniform thickness is highly recommended for this method. 

 

5. The proposed image based method requires very much computation and data 

processing when performing camera calibration, image orientation and 

measurement targets identification. So, Photogrammetry software (in our case, 
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PhotoModeler software was used) is strongly suggested to be adopted for these 

processes.  
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CHAPTER IV 

 

DEVELOPMENT OF A NEW HIGH-SUCTION TENSIOMETER  

 

GENERAL 

 

As addressed in Chapter II, high suction tensiometers were needed to monitor the 

suction changes of unsaturated soil specimens during undrained triaxial testing. 

However, due to the high mortality rate, commercial high-suction tensiometers for 

measuring the matric suction (below -100 kPa) on unsaturated soils are very limited. 

In this study, a new high-suction tensiometer was designed and fabricated based on a 

commercial pressure transducer. The detailed design, fabrication, saturation, and 

calibration process are addressed in details as follows. Also, the maximum attainable 

suctions were obtained through free evaporation tests. 

 

HIGH-SUCTION TENSIOMETER FABRICATION 

 

In Chapter II, it could be found that all existing high-suction tensiometers were based 

upon a pressure transducer. For the tensiometer developed for this study, as shown in 

Figure 4.1, EPXO series miniature pressure transducer was purchased from meas-

spec.com with a pressure measurement up to 1500 kPa. The principle for the pressure 

measurement is based Wheastone Bridge as shown in Figure 4.2. For a pressure 

measurement, if a pressure was applied, after pressure equilibrium, the deformation of 

the sensing area inward or outward will results in a change of resistance. An 

excitation voltage source was applied (5 V in this case) through red and black wire 

(ground wire). Then, a voltage output can be detected between the green and white 

wire which was introduced by resisters with different resistances used in the 

Wheastone Bridge. If a series of known pressure were applied, a linear relationship 

can be built between the pressure applied on the pressure transducer and the output 

voltage of the Wheastone Bridge which is referred as the calibration.  
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Figure 4.1 EPXO pressure transducer 
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Figure 4.2 Principle of pressure measurement based on Wheastone Bridge 

 

Based on the literature review on existing high-suction tensiometers as shown in 

Chapter II, a new design for the tensiometer which incorporated with the purchased 

EPXO pressure transducer was generated as schematically shown in Figure 4.3. 

Similar to existing high suction tensiometers, the tensiometer developed in this study 

also included three parts which are pressure transducer, ceramic disc, and housing. 

However, different to the existing tensiometers, the ceramic disc was glued to a 
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stainless steel ring instead of glued to housing. The reasons for this design would be 

discussed later in this chapter. 

Diaphram

Housing

EPXO Pressure
Transducer

Cables

0.2 mm

Ceramic Disc Water Reservoir

Epoxy

 
Figure 4.3 Schematic plot of the tensiometer 

 

A pressure transducer, epoxy, housing, ceramic disc and stainless steel ring are 

required for the tensiometer fabrication as can be seen in Figure 4.4. The housing was 

designed with thread inside to incorporate with the thread on the pressure transducer. 

Also, a platform inside the housing, on which the stainless steel ring will rest, was 

used to provide a gap between the ceramic disc with the transducer diaphragm. Due to 

the presence of this gap, an empty room was generated which was used as a water 

reservoir. Ceramic disc was used as a filter to prevent air from entering the water 

reservoir. The fabrication process for the tensiometer can be mainly divided into three 

steps: 
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Ceramic Disc
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Figure 4.4 Preparation for tensiometer fabrication 

 

1. EPXO pressure transducer, ceramic disc, stainless steel ring, and housing were 

carefully cleaned to remove any possible grease contamination which could weak 

the sealing due to the use of epoxy. A ceramic disc as shown in Figure 4.4 (2.5 

mm in thickness and 10 mm in diameter) was glued to a stainless steel ring (10 

mm and 13 mm in inner and outer diameters with a height of 2 mm) by using 

epoxy with a roughly 0.25 mm protuberance at the both sides (Figure 4.5a). 

During this process, to ensure a good sealing, more epoxy is encouraged to be 

used. Also, the stainless steeling ring was fabricated as shown in Figure 4.6. In 

this way, it would give us a better chance to seal the ring well. Once glued 

together, the ceramic disc in the ring need to be twisted to remove all possible air 

bubbles which could probably bring leakage to the tensiometer. After curing, 

epoxy on the outer side surface of the ceramic disc ring was carefully removed. 

Then, as shown in Figure 4.5c, the ceramic disc was grinded to 2 mm by using a 

600 grit abrasive disc (Figure 4.5b) to remove the epoxy infiltrated in ceramic disc 

and generate a fresh surface. 

 

2. The housing (Figure 4.4) used to hold the stainless steel ring as well as the 

ceramic disc in place was screwed to the pressure transducer (Figure 4.5a) with 

some epoxy located inside (red line in Figure 4.3). Different to the O-ring sealing 
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at the very end of the housing used by Ridley and Burland (1993), in this study, 

epoxy was used only around the sensor diaphragm. The thread is outside of the 

water reservoir instead of part of it which could probably reduce the possibility of 

cavitation according to Guan (1996). Once cured, the epoxy squeezed out to the 

surface of the diaphragm during assembling was carefully removed as shown in 

Figure 4.5c. 

 

3. The ceramic disc ring was glued to the stainless steel housing with suitable amount 

of epoxy and twisted to remove trapped air as addressed before. Then, a pressure 

was applied on the stainless steel ring to ensure a good contact between the ring 

and the housing during curing process for the epoxy. Figure 4.5d shows the 

tensiometer after fabrication. After curing, the strength of the epoxy was fully 

achieved and the tensiometer can be submerged in de-aired water for saturation. In 

this study, a 0.2 mm thickness water reservoir (12.7 mm3 in volume) underneath 

the ceramic disc ring is required for the water to provide a room for the outward 

deflection of the diaphragm. The volume of the water reservoir is recommended to 

be as small as possible to short the time for saturation process and reduce the 

possibility of cavitation. Also, the water reservoir cannot be too small to tolerate 

the outward deformation of the sensor diaphragm. When the air trapped in the 

water reservoir was fully dissolved into water under high pressure, the saturation 

process was considered to be finished. 
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Figure 4.5 Tensiometer fabrication 

 

 
Figure 4.6 Layout of the stainless steel ring 

 

The main difference between the design in this study and the other previous designs is 

the use of the stainless steel ring. Three main benefits were introduced due to the use 

of this ring. (1), the assembling process was divided into three steps which limited the 

possibility of mistakes. Also, each step is easy to perform. In other words, poor 

sealing is unlikely to happen in this design; (2), the quality of the assembling can be 

well controlled. Redundant epoxy can be removed and fresh ceramic surface can be 

generated to remove any stain on its surface or introduced during the assembling 

process which could also reduce the possibility of cavitation once saturated; and (3), if 

the tensiometer did not work well due to bad sealing, the ring with ceramic disc inside 
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can be easily detached from the pressure transducer without causing any damage to 

the ceramic disc. 

 

To ensure a good contact between the tensiometer and soil specimen and hold the 

tensiometer in place during testing, a grommet as shown in Figure 4.7e was fabricated 

by using silicone rubber. Detailed fabrication process is shown in Figure 4.7. First, to 

prevent introducing air bubbles, silicone rubber was gently mixed as shown in Figure 

4.7a. A stainless steel mold as shown in Figure 4.7b was built. After fully mixed, 

silicone rubber can then be poured into the mold as shown in Figure 4.7c. This 

process also required great patience to avoid air bubbles. Silicone rubber cured after 

several hours. Then, mold could be released as shown in Figure 4.7d. Edge of the 

grommet was trimmed as shown in Figure 4.7e. The inner diameter of the grommet is 

designed to be less than the outer diameter of the tensiometer housing. Therefore, the 

grommet can hold itself well in place.  Figure 4.7f is a picture of the tensiometer with 

the grommet on. The grommet is suggested to be mounted on the tensiometer all the 

time. In case of any possible drop or collision, the silicone rubber grommet could 

provide absorption of the shock energy. Also, for soil specimens with high suction 

(>300 kPa), to prevent the tensiometer cavitation during installation and ensure a 

good contact between the specimen surface and the tensiometer, a thin layer of 

saturated Kaolin was smeared on the surface of the ceramic disk which is shown in 

Figure 4.8. 
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Figure 4.7 Grommet fabrication by using silicone rubber  
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(a) Without Kaolin                                (b) With Kaolin 

Figure 4.8 High-suction Tensiometer  

 

HIGH-SUCTION TENSIOMETER SATURATION 

 

In this study, two of these tensiometers were fabricated. For the saturation process, 

different to the other tensiometers (Ridley and Burland 1993 and Guan 1997), no 

special equipment is required. The tensiometer was installed to the triaxial test 

apparatus and submerged into de-aired water as shown in Figure 4.9. After this, a 

significant pressure increase of the water reservoir in the tensiometer could be 

observed due to the formation of a wetting front saturating the ceramic disc as long as 

the tensiometer was well sealed. As the wetting front moves towards the reservoir, the 

air trapped in the ceramic disc was progressively compressed and causing the pressure 

increase in the reservoir.  
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Figure 4.9 Tensiometers installation  

 

In this study, during saturation, an air pressure of 600 kPa was applied to dissolve the 

air trapped in ceramic disc and underneath the ceramic disc which is commonly 

referred as pre-pressurization. Usually, for the initial saturation, to dissolve all the air 

in the ceramic disc as well as the air in the water reservoir, two to three pre-

pressurization cycles in one week was required. By blowing the ceramic disc at the 

tensiometer tip, if the pressure quickly dropped to lower than -100 kPa, the 

tensiometer was considered to be saturated and can be used for suction measurement. 

After each suction measurement, the tensiometer was kept in water all the time. After 

the initial saturation, usually, several hours under a pressure of 600 kPa are sufficient 

to saturate the tensiometer developed in this study.  

 

HIGH-SUCTION TENSIOMETER CALIBRATION 

 

Since the presence of epoxy could possibly result in some deformation of the 

diaphragm due to hardening, in order to obtain an accurate measurement, calibration 

of tensiometer was performed after sensor saturation which is consistent with the real 

condition of use. For the calibration process in this study, the tensiometers were 

calibrated in positive pressure range. The negative pressure range calibration is based 
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on extrapolation which is also used and verified by some other researchers (Lourenco 

et al. 2008, xxxxxxx). The accuracy of the calibration can be checked by the pressure 

immediately after cavitation, which should be approximately -100 kPa. In other 

words, a tensiometer cavitation pressure reading close to -100 kPa indicates a good 

calibration. In this study, three cycles of cell pressure between 0 to 600 kPa were 

applied to calibrate the tensiometers under pressure change. When there is a cell 

pressure change, water flows inwards or outwards due to the pressure increases or 

decreases, respectively. The pressure were applied in steps and followed by waiting 

periods (2 minutes) to ensure the pressure equilibrium. Only the final readings, when 

equilibrium was achieved, were used for tensiometer calibration.  

 

In this study, two of the tensiometers were fabricated. The calibration results for these 

tensiometers are tabulated in Table 4.1. By plotting those voltage output against 

applied pressure, a linear relationship between them can be found as shown in Figure 

4.10.  

 

Table 4.1 Tensiometer calibration 

Applied Pressure (kPa) 

Tensiometer Reading (mV) 

Tensiometer 1 Tensiometer 1 

Test 1  Test 2 Test 3 Test 1  Test 2 Test 3 

0 0.654 0.66 0.657 1.131 1.133 1.131 

100 1.395 1.393 1.391 1.906 1.904 1.904 

200 2.127 2.122 2.12 2.671 2.667 2.667 

300 2.85 2.85 2.852 3.428 3.427 3.43 

400 3.578 3.578 3.571 4.189 4.189 4.183 

500 4.297 4.301 4.297 4.941 4.945 4.941 

600 5.01 5.016 5.014 5.687 5.691 5.691 
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Figure 4.10 Calibration results of two tensiometers 

 

MAXIMUM ATTAINABLE SUCTION 

 

The maximum attainable pressure is highly dependent on saturation process. Guan & 

Fredlund (1997) indicated that the maximum measurable suction could be affected by 

the growth of pre-existing gas bubbles, air entry value of ceramic disc, and the 

nucleation of vapor bubbles. In this study, it was also found that the maximum 

attainable suction associated with each different saturation process and tensiometers 

are different. Usually, a tensiometer with a high air entry ceramic disc at high degree 

of saturation could reach a higher suction measurement. After calibration, free 

evaporation test reported by Guan and Fredlund (1997) was used for the 

determination of the maximum attainable pressures. Due to water evaporation, the 

pore water pressure inside the tensiometer gradually decreased with time. The 

pressure right before the cavitation is the maximum attainable suction for the 

tensiometer. Free evaporation test results are presented in Figure 4.11. For the two 

tensiometers, 15 bar ceramic discs were used as the filter. The maximum attainable 

pressures measured are around 1130 kPa which is below 15 bar.  
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Figure 4.11 Maximum attainable pressures 

 

CONCLUSIONS 

 

In this chapter, based on a review of existing high-suction tensiometers, a new high-

suction tensiometer was designed, fabricated, saturated, and calibrated. The use of a 

stainless steel ring significantly reduced the chance of poor sealing and simplified the 

assembly process. Also, the tensiometer can easily be taken apart without causing any 

damage to the ceramic disc. To ensure a good contact between a soil specimen and the 

tensiometers, grommets was fabricated by using silicone rubber. After saturation and 

a careful calibration, the tensiometers were proved to be able to reach a maximum 

attainable suction at around 1100 kPa with 15 bar ceramic discs. The tensiometers 

developed in this study worked excellent throughout all the testing.  
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CHAPTER V 

 

RESEARCH PROGRAMME AND PRESENTATION OF TEST RESULTS 

 

GENERAL 

 

In order to evaluate the constitutive behavior of unsaturated soil, some undrained 

isotropic compression and triaxial tests were conducted during which the moisture 

constant remain constant while the suction and volume change of the soil sample were 

monitored. In this chapter, the sample preparation, tensiometer development, 

undrained isotropic compression, and shear tests were discussed in details. In this 

study, a new tensiometer for suction measurement of unsaturated soil during triaxial 

test based on a commercial EPXO pressure transducer, was designed and fabricated 

for this study. Also, the new method as presented in Chapter III was adopted to 

evaluate the volume change behavior of unsaturated soil during isotropic compression 

and triaxial test. 

 

SAMPLE PREPARATION 

 

To conduct the isotropic compression and triaxial tests, some soil sample with 

approximately the same load history and different matric suction levels were required. 

In this study, Fairbanks silt, collected from the side of Badger road near Brown’s Hill 

Quarry (marked as red in Figure 5.1), was used for all the soil tests. After oven-dried, 

soil passed the No.16 Sieve to remove the organic and gravels. Figure 5.2 is a picture 

of Fairbanks silt after sieving. Some preliminary tests on Fairbanks silt were 

conducted which included Atterberg limits, grain size distribution, specific gravity, 

and compaction test. 
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Figure 5.1 Location of the used Fairbanks silt 

 

 
Figure 5.2 Fairbanks silt  
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Soil Properties 

 

Sieve analysis according to ASTM D6913 (2012).and hydrometer tests according to 

ASTM D422 (2012) were used to determine the particle size distribution of Fairbanks 

silt. Test results are presented in Figure 5.3. Nearly 70% of the soil particles are 

within the size range of 0.01 to 0.075 mm as shown in Figure 5.3. Compaction test 

results are presented in Figure 5.4. Besides these, some other test results such as 

Atterberg limits according to ASTM D4318 (2012) and specific gravity test according 

to ASTM D854 (2012) are presented in Table 5.1. 

 
Figure 5.3 Particle size distribution of Fairbanks silt  

 
Figure 5.4 Compaction curve  
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Table 5.1 Soil properties of Fairbanks silt 

Soil Properties Value 

Maximum dry density 1.732 g/cm3 

Optimum moisture content 15.70% 

Specific gravity 2.71 

Plastic limit 21.6 

Liquid limit 24.7 

Plastic index 3.1 

 

Specimen Compaction and Moisture Equalization 

 

For the isotropic compression and shear test, cylindrical soil samples used were 2.8” 

in diameter and 5.6” in height. Split mold as shown in Figure 5.5a was used for 

compaction. Soil (Fairbanks silt) from the field was oven dried and passing the No.16 

Sieve. Then soil was stored in buckets. Before using, soil was over dried again to 

remove moisture. Then, soil was moved out from the oven and cooled down to room 

temperature. Soil was mixed with tap water to desired moisture content (17.7% in our 

case) and stored in well-sealed buckets for moisture equilibrium for at least 12 hours. 

After moisture equilibrium, soil can then be used for specimen fabrication. Soil 

specimens were compacted in 11 layers according to the method reported by Ladd 

(1987). The first 10 layers were 0.5” per layer and the last layer was 0.6”. 385 g wet 

soil was used for each layer. After compaction for each layer, the surface of the soil 

was scarified to ensure a good contact between soil layers. After compaction, 

membranes used to cover the soil cylinders were carefully removed. Then, soil 

cylinders were placed in a container which is shown in Figure 5.1b for moisture 

equilibrium. Then, the contained was carefully sealed for the moisture equilibrium 

process. After two months, the moisture equilibrium considered to be reached and the 

samples can then be extracted for isotropic compression and triaxial tests. 
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(a) Compaction mold                                 (b) Moisture equalization 

Figure 5.5 Specimen preparation 

 

SWCC 

 

Soil suction is commonly referred to as the free energy state of soil water (Fredlund 

and Rahardjo 1993). The soil suction as quantified in terms of the relative humidity is 

commonly called “total suction”. Total suction is the equivalent suction derived from 

the measurement of the partial pressure of the water vapor in equilibrium with a 

solution identical in composition with the soil water, relative to the partial pressure of 

the water vapor in equilibrium with free pure water. It has two components, namely, 

matric (or capillary) and osmotic (or solute) suction. Matric suction is the equivalent 

suction derived from the measurement of the partial pressure of the water vapor in 

equilibrium with the soil water, relative to the partial pressure of the water vapor in 

equilibrium with a solution identical in composition with the soil water. Osmotic 

suction is the equivalent suction derived from the measurement of the partial pressure 

of the water vapor in equilibrium with a solution identical in composition with the soil 

water, relative to the partial pressure of water vapor in equilibrium with free pure 

water. In this study, matric suction was adopted to investigate the soil constitutive 

behavior.  
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SWCC is the relationship between soil water content (gravimetric, volumetric water 

content, or degree of saturation) and its suction.  

 

( )a wu uψ π= − +     (5.1) 

 

where, 

( )a wu u−  =  matric suction, 

au  =  pore-air pressure, 

wu  =  pore-water pressure, and 

π   =  osmotic suction. 

 

To obtain SWCC of Fairbanks silt, pressure plate test was conducted. Soil specimens 

as shown in Figure 5.5b after compaction were shaped into 2” in diameter and 0.75” 

in height cylinders by using cutting rings as shown in Figure 5.6a. Before pressure 

plate test, soil samples were submerged in water for a week to ensure fully saturated. 

After saturation, samples in rings were placed on pre-saturated high air-entry ceramic 

disc which is also shown in Figure 5.6a. Different cell pressures ranging from 100 to 

800 kPa were to determine the SWCC of Fairbanks silt. Pressure in the chamber was 

maintained for a week. Then, soil specimens were extracted and followed by water 

content determination. The matric suction was applied to a soil specimen by 

controlling the difference in the pore air pressure ua and the pore water pressure uw 

with both pressures being positive as shown in Figure 5.6b. The pore water pressure 

was controlled at an atmospheric pressure while the pore air pressure was changed to 

obtain the specific matric suction value. This procedure is referred to as the axis-

translation technique (Hilf 1956). The main component of the pressure plate extractor 

is the high air entry disk as shown in Figure 5.6b that remains saturated for matric 

suction applications below the air entry value of the disk. The disk is always saturated 

and in contact with in a compartment below the compartment below the disk. The 

water pressure in the compartment is opened to the atmosphere to maintain at a 

positive pressure in the closed system. During the test soil specimen is placed on the 

high air entry disk. A good contact between the specimen and the disk results in the 

pore water pressure in the soil being controlled at the same pressure as the water 
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pressure in the compartment. The air pressure is then applied to the specimen in order 

to impose the desire matric suction. 

 

 
(a) Pictures of pressure plate extractors 

 

Distilled Water
reservoir

Soil Specimen High air-
entry disk

Air pressure
supply

Air-tight chamber

 
(b) Schematic plot of the pressure plate extractor 

Figure 5.6 Pressure plate test for determination of SWCC 

 

Theoretically, by conducting pressure plate tests with 15 bar ceramic disk, the suction 

of soil that can be reached is 15 bar. In reality, the soil suction that can be measured is 

lower than this. Thus, for SWCC of soil higher than 15 bar, another method by using 

salt solution, was adopted. Table 5.3 shows the osmotic suctions for different salt 

solutions at 25 oC. In this study, NaCl was used for the solution preparation according 

to Table 5.3.  After preparation, solution was stored in a stainless steel bowl as shown 

in Figure 5.7a.  Then, soil specimen slice (10 mm in height and 70 mm in diameter) as 
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shown in Figure 5.7b was placed in a plastic mold which is above salt solution level. 

Edge of the stainless steel bowl was smeared with vacuum grease. Plastic wrap was 

used to seal the container which is also shown in Figure 5.7b. After 15 days, the 

moisture equilibrium was considered to be completed. The tested soil specimen was 

then oven dried to determine its water content. 

 

  
(a)  Container with salt solution;   (b) Container sealed with plastic wrap 

Figure 5.7 Use of salt solution for determination of SWCC 
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Table 5.2 Osmotic suction for several salt solutions (Bulut et al. 2001) 

 
 

TRIAXIAL TESTING  

 

In this study, Servo-Controlled Simple Shear Testing System (SSH-100) from GCTS 

(Figure 5.8), which is designed for triaxial testing on saturated soils, was modified for 

the unsaturated soil testing. Data acquisitions system was used to record the soil 

suction, cell pressure, shear load, and vertical deformation. 
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Data acquisition 
system

Control pannelLoad frame

Measurement 
targets

Tensiometer port

Figure 5.8 Testing system from GCTS 

 

After saturation and calibration, tensiometers can then be used for matric suction 

monitoring on unsaturated soil specimen during testing. Before sample installation, 

dimensions of the soil specimen were determined with a caliper to an accuracy of 0.01 

mm. By using the cutter as shown in Figure 5.9a, two holes were cut on the 

membrane which would be used to cover the soil specimen during testing. Then, soil 

specimen was covered with the membrane with help of an O-ring placing tool as 

shown in Figure 5.9b. Specimen was mounted on the pedestal of the triaxial cell and 

carefully sealed with O-rings as shown in Figure 5.10a. A small suction (-5 kPa) was 

applied after this. Some vacuum grease was smeared on the back of the grommet 

which was used to hold the tensiometer. In this study, two pre-saturated tensiometers 

were placed at the middle of the specimen which is schematically shown in Figure 

5.10b. By carefully stretching the membrane, as shown in Figure 5.10a, tensiometer 

can be placed on sample surface (the contact area was pre-flated). The use of vacuum 

grease would ensure a good sealing between the grommet and membrane. Also, the 

applied suction will hold the sensor in place during specimen installation. After this, 

36 measurement targets in four strips (Figure 5.10a) can be posted on membrane 

surface with help of vacuum grease which is water proof. Images were captured to 

determine the volume of the soil specimen. Triaxial cell wall was installed and filled 

with tap water as shown in Figure 5.11. A confining pressure of 50 kPa was then 
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applied to hold the tensiometer in place and the applied suction was released 

simultaneously. Usually, 1/3 to one hour (depend on soil suction) was needed for the 

suction of the soil specimen to reach equilibrium.  

 

 
        (a) Membrane and cutter                                 (b) O-ring placing tool 

Figure 5.9 Membrane mounting on specimen 

 

 
(a)  
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(b) 

Figure 5.10 Tensiometer installation 

 

 
Figure 5.11 Triaxial test setup 
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After suction equilibrium, isotropic compression test can be performed. Confining 

pressure was gently increased or decreased to a target value and followed by another 

equilibrium period which also depends on soil suction. After suction equilibrium, 

volume of the soil specimen was measured by using the method as presented in 

Chapter III. The specific loading path used in this study is shown in Figure 5.12 and 

tabulated in Table 5.3. After isotropic test, shear load was applied in steps which are 

also shown in Table 5.3.  The specimen was then dismantled from the pedestal and 

the membrane was removed from the specimen. Figure 5.13 is a picture of a soil 

specimen after shear test. The final mass of the specimen was measured immediately 

after removing the membrane from the specimen. Soil specimen was oven-dried right 

after shear test to determine its water content. 
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(a) Loading path A 

 
(b) Loading path B 

 Figure 5.12 Isotropic loading paths 
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Table 5.3 Loading paths for specimens with different initial suctions 

Group A Group B 

Net confining 

stress (kPa) 

Vertical deformation 

due to Shear Load 

(mm) 

Net confining 

stress (kPa) 

Vertical deformation 

due to Shear Load 

(mm) 

50 0 50 0 
200 0 125 0 
400 0 200 0 
250 0 300 0 
100 0 230 0 
250 0 160 0 
400 0 100 0 
600 0 160 0 
600 2 230 0 
600 4 300 0 
600 3.4 400 0 
600 5.4 500 0 
600 7.4 600 0 
600 9.4 500 0 
600 12.4 400 0 
600 15.4 300 0 
600 19.4 400 0 

  500 0 
  600 0 
  600 2 
  600 4 
  600 6 
  600 8 
  600 10 
  600 13 
  600 16 
  600 19 
  600 22 
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Figure 5.13 Soil specimen after testing 

 

PRESENTATION OF TEST RESULTS 

 

This section presents the results of tests which include undrained isotropic 

compression and shear tests. Soil water characteristic curve (SWCC) of tested soil 

was determined through pressure plate test and salt solution method. Isotropic 

compression tests were conducted on soil specimens with different initial moisture 

contents. For a specific specimen, after an isotropic compression test, followed by 

undrained shear test on the same specimen. In other words, for one soil specimen, 

both undrained isotropic compression and shear tests were performed.  

 

Soil Water Retaining Curve  

 

In this study, SWCC was obtained through pressure plate test as shown in Figure 

5.14. Also, SWCC under different net confining stresses were extracted from 

undrained isotropic compression test. Test results are presented in Figure 5.15 at net 

confining stresses of 50, 200, 400, and 600 kPa. As can be seen in Figure 5.15, 
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suction of Fairbanks silt changed significantly at water content less than 10% due to 

its larger particle size when compared with clay.  

 

 
Figure 5.14 SWCC of Fairbanks silt 
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(b) 200 kPa 

 
(c) 400 kPa 
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(d) 600 kPa 

Figure 5.15 Soil water retaining curve under different confining stresses 

 

Undrained Isotropic Compression Test Results 

 

Undrained isotropic compression tests were conducted on soil specimens with 

different initial moisture contents to evaluate the soil behavior under isotropic loading 

condition. Two groups of tests were performed in which different loading paths were 

used. As addressed before, the maximum attainable suction measured can be up to 

1100 kPa. However, for real tests on silt specimens, the tests only covered specimens 

with suction less than 500 kPa for the following reasons: (1) due to good contact 

between soil specimen and the tensiometer cannot be ensured during installation 

process, tensiometers can easily cavitate due to water evaporation at the ceramic 

surface; (2) for soil with suction greater than 500 kPa, it took hours to reach a new 

suction equilibrium after an isotropic loading change, during which the tensiometers 

could also cavitate; and (3) for unloading process, if a confining stress was released, a 

sudden suction increase could be found in the tesnsiometer which could also probably 

cavitate the tesnsiometer. Therefore, this study only covers soil specimen with matric 

suction less than 500 kPa. For soil specimens with different initial water content, 

during undrained isotropic compression and shear testing, soil matric suction change 

due to change of load was recorded which are presented in Figure 5.16. For Figure 

5.16a and 5.16b, the difference between them is the used loading paths. 
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(a) Loading path A 

 
(b) Loading path B 

Figure 5.16 Soil suction equalization during isotropic  

compression and shear test 

 

During testing, if the isotropic load was increased or released, a sudden suction 

change can be found for the tensiometer reading as shown in Figure 5.16. The 

magnitude of the change can be affected by how quick was the load increased or 

released. There were two possible reasons for this phenomenon: (1) the sudden 

increase or release of the isotropic load would result in a change in pore air pressure 

in the soil specimen which could be captured by the tensiometer; (2) As can be seen in 
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Figure 5.17, during isotropic or shear testing, there is a contact pressure (equal to the 

applied confining pressure) between soil specimen and tensiometer tip. Due to this 

contact pressure, the pre-saturated ceramic will deform toward the water reservoir 

from its original position (shown in dashed line in Figure 5.17). Once suction 

equilibrium was reached, water would not come out of the tensiometer and a negative 

pressure was maintained in the water reservoir. When the contact pressure was 

increased, the ceramic disc will continue to deform toward the water reservoir which 

could lead to a significant pressure increase because of water is not compressible. 

This significant pressure increase will be reflected by a sudden suction decrease in the 

tensiometer as shown in Figure 5.16. For soil specimen at water content of 15.1%, 

when the applied confining pressure increased, the pressure recorded by the 

tensiometer jumped to positive range. A reverse process can be used to explain the 

sudden suction increase during a confining pressure release. After this sudden change, 

water in the water reservoir would flow into or out until a new suction equilibrium 

was reached. In Figure 5.16, it can also be found that the time needed for the suction 

equilibrium depended on the soil suction. The lower the soil suction, the less the time 

needed for suction equilibrium. For soil specimen with suction around 50 kPa, time 

needed for the suction equilibrium was less than 10 minutes. However, for soil 

specimen with suction around 150 kPa, time needed for the suction equilibrium was 

around 20  to 30 minutes and this suction equilibrium time was raised to hours  for 

soils with suction higher than 500 kPa. Thus, ideally, for soil with suction around 50 

kPa, the whole testing process (include isotropic compression and shear test) could be 

completed in 4 hours. However, this time was increased to more than 15 hours for a 

soil specimen with an initial suction around 420 kPa as shown in Figure 5.16.  
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Figure 5.17 Tensiometer response to sudden increase or  

decrease of confining pressure 

 

During undrained shear testing as shown in Figure 5.16, this sudden change of suction 

reading was not pronounced any more due to absence of the two reasons as addressed 

before. The shear load was applied slowly (1 mm/min) and the confining pressure was 

maintained to be constant during shearing. Also the time needed for suction 

equilibrium due to shear load was less than that due to isotropic load. 

 

Usually, to investigate unsaturated soil behavior under loading, suction controlled 

triaxial test was used. However, in this study, instead of suction controlled triaxial 

test, suction monitored triaxial tests were performed with help of the tensiometers 

specially developed for high suction measurement. For isotropic compression tests, 

after soil suction equilibrium, suction was recorded by tensiometers. As shown in 

Figure 5.18, suction changes of soil specimens with different water contents under 

different load paths are presented on the (s - p) plane.  
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(a) Loading path A 

 
(b) Loading path B 

Figure 5.18 Suction changes due to variation of net confining stress  

 

As addressed before, two idealized loading paths on s-p plane were presented. After 

soil testing, the real loading paths used were plotted as shown in Figure 5.18. It can be 

found that the soil suction would decrease with an increase of confining stress and 

increase with a decrease of confining stress at different moisture content levels. Also, 

with decrease of water content, effect of mean net stress on soil suction was getting 

more pronounced. After unloading, there is some irrecoverable suction change. This is 
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because of the plastic deformation of the soil after loading. When unloading, the soil 

deformation was not fully recoverable which resulted in the irrecoverable suction 

change. 

 

Undrained isotropic compression curves for all soil specimens with different moisture 

contents are plotted on the (v - p) plane as shown in Figure 5.19. The specific volumes 

of all soil specimens decreased due to the increase of mean net stress. After 

unloading, as can be seen in Figure 5.19, there was some plastic volume change due 

to the loading process. Also, as shown in Figure 6.6, the yield point at a given value 

of suction was identified by a marked change in the slope of the continuous plot of 

specific volume against the logarithm of mean net stress. Yield stress of the soil 

specimens were determined by using Casagrande graphic determination method 

(1936) and plotted against soil suction as shown in Figure 5.20. Based on this method, 

yield stress was obtained and plotted against soil water content as shown in Figure 

5.21. It can be found that the soil start to yield as the mean net stress increased to 100 

to 200 kPa. Also, a clear trend can be found in Figure 5.21 that the yield stress of the 

soil specimens increased with an increase of matric suction with soil water contents 

ranging from 5.4 to 15.1%. Ideally, the pre-consolidation stresses for these soil 

specimens were consistent. However, yield stress of soil specimens increased due to 

the drying process for moisture equilibrium.        
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(b) Loading path B 

Figure 5.19 Volume change due to variation of net confining stress  

under different water contents 

 

 
Figure 5.20 Casagrande method for determination of yield stresses 
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Figure 5.21 Yield stresses based on Casagrande method  
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(b) Loading path B 

Figure 5.22 Suction changes due to variation of volume 

 

Different from drained suction-controlled triaxial test, soil suction during testing 

varied in this study. It is possible to plot the stress paths of the specimens during 

isotropic testing under constant water content condition on the (v - s) plane as shown 

in Figure 5.22. The results indicated that matric suction decreased with the decrease in 

specific volume under constant water content which was a result of isotropic 

compression. 

 

Undrained Shear Test Results 

 

Undrained shear tests were performed on Fairbanks silt specimens at different 

moisture contents under a confining pressure of 600 kPa right after the undrained 

isotropic compression test. A constant loading rate, which was 1 mm/min, was 

applied. Test was paused for a certain time to wait for the suction equilibrium and 

image capturing. For load path A, an unloading was performed after 4 mm of vertical 

displacement as shown in Figure 5.23a. It can be found that in Figure 5.23, the stress 

strain curves for all soil specimens are very close. Under axial strain within 15.4%, 

deviator stress peak was found to be at a vertical strain of 13.5% in Figure 5.23b. The 
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to the possible poor contact between the used tensiometers and the soil specimen 

surface at high strain level, the shear test was stopped at 13% and 15.4% for loading 

path A and B, respectively. The stiffness of the soil specimens did not varied very 

much under a confining pressure of 600 kPa. 

 

 
(a) Loading path A 

 
(b) Loading path B 

Figure 5.23 Deviator stress versus axial strain under  

different moisture conditions 
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Besides the deviator stress change at different strain levels, volume changes of soil 

specimen during testing were also measured (Figure 5.24) by using the method 

proposed in Chapter III. The signs for the volumetric strain are negative for 

compression and positive for dilation. The volumetric strain of all the specimens 

exhibited similar characteristics. The results indicated that the specimens compressed 

in the early stage of shearing and then dilate afterwards.   

 
(a) Loading path A 

 
(b) Loading path B 

Figure 5.24 Specific volume change versus axial strain under  

different moisture conditions 

1.70

1.72

1.74

1.76

1.78

1.80

0 0.04 0.08 0.12 0.16

Sp
ec

ifi
c 

vo
lu

m
e,

 v
 

Axial strain, εa 

W = 15.1%

W = 13.4%

W = 9.9%

W = 9.5%

W = 7.6%

W = 6.8%

1.70

1.72

1.74

1.76

1.78

1.80

0 0.04 0.08 0.12 0.16

Sp
ec

ifi
c 

vo
lu

m
e,

 v
 

Axial strain, εa 

W = 12.3%
W = 9.9%
W = 8.4%
W = 8.3%
W = 7.3%
W = 6.5%
W = 5.4%



124 

 

Change of matric suction on soil specimens with different moisture contents during 

undrained shear test under a confining pressure of 600 kPa are presented in Figures 

5.25 and 5.26. The results indicated that matric suction decreased with the increase of 

deviator stress for most of the soil specimens as shown in Figures 5.25 and 5.26. For 

some of the soil specimens, soil suction increased throughout the test or decreased in 

the early stage of shearing and increased afterwards.  

 

 
(a) Loading path A 

 
(b) Loading path B 

Figure 5.25 Change of matric suction under different strain levels 
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(a) Loading path A 

 
(b) Loading path B 

Figure 5.26 Change of matric suction due to shear loading under  

different moisture conditions 
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CHAPTER VI  

 

PRESENTATION OF RESULTS AND CONSTITUTIVE MODELLING  

 

GENERAL 

 

As discussed in Chapter II, at present, most researchers use results from suction 

controlled consolidated drained (SCCD) tests to perform constitutive modeling for 

unsaturated soils. However, SCCD tests are time-consuming due to extremely low 

permeability of unsaturated soils and subsequent lengthy equilibrium time. It takes 

five days to two weeks to bring a soil to a specific initial condition (e.g. Sivakumar 

1993; Sharma, 1998; Hoyos, 1998). A simple isotopic compression test usually takes 

several weeks or months. For example, it took Sivakumar (1993) 959 days to 

complete 30 CSTs/SSP for a compacted speswhite kaolin, with an average of 32 

days/test. It took Sharma (1998) 801 days to complete 20 isotropic compression tests 

for two compacted expansive soils under isotropic conditions with an average of 40 

days/test. Although problems associated with unsaturated soils exist all over the 

world, SCCD tests cannot be justifiable for routine engineering projects. It is therefore 

important to develop alternative, cost-effective ways to characterize elasto-plastic 

behavior for unsaturated soils. This paper discusses possible use of results from 

undrained tests for the constitutive modeling of unsaturated soils. 

 

THEORETIC BASIS  

A constitutive model has to be able to predict soil behavior under all possible stress 

paths. On the other hand, results from any test reflect constitutive behavior of the soil 

along the specific stress path in the test and should be able to be used for constitutive 

modeling purposes. Compared with consolidated drained tests, some tests for 

unsaturated soils are easier to perform. An example is the unconfined compression 

test, which has been routinely performed in industrial labs and undergraduate 

classrooms. Often, an unsaturated soil specimen is used, although the test results are 

usually analyzed based on the theory of saturated soil mechanics. The test can be done 

in less than one hour, using any routine triaxial test apparatus for saturated soils. From 

the viewpoint of constitutive modeling, an unconfined compression test is an 
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undrained triaxial test with simultaneous changes of p, q, and s. The variations of 

suction during the test are not externally specified, but internally determined by the 

coupling requirement that water content remains constant. In an undrained test, 

suction in the soil specimen will instantaneously reach equilibrium everywhere, which 

has been experimentally verified (Bishop et al. 1960; Rahardjo et al. 2004; Thu et al., 

2006). Although having a more complicated stress path, an undrained test has the 

following advantages over consolidated drained tests: The tests are fast, cheap, easy to 

perform, and more representative of field conditions. With simultaneous change of p, 

s, and q, each test can provide at least three times the information as that from a 

consolidated drained test, which means fewer tests are needed to provide the same 

amount of information. There is much less possibility of disturbance due to a short 

testing period, and the test results are more reliable.  

Since a constitutive model must be able to predict soil behavior under any condition, 

including un-drained loading conditions, it is both theoretically reasonable and 

practically feasible to replace consolidated drained tests with undrained tests for the 

constitutive modeling of unsaturated soils. The only problem is that, at present, there 

is no method available to take full advantage of results from undrained tests for the 

constitutive modeling purposes. The newly proposed modified state surface approach 

(MSSA) (Zhang and Lytton 2009a and 2009b) can be used for the purpose. The BBM 

is used as an example to demonstrate the proposed method since it is the first and 

most influential elasto-plastic model for unsaturated soils. 

 

MODIFIED STATE SURFACE APPROCH 

 

Zhang and Lytton (2009a and 2009b) proposed a Modified State Surface Approach 

(MSSA) for the constitutive modeling of unsaturated soils. The principle of the 

MSSA can be illustrated by Figure 6.1 (Zhang et al. 2010). Figure 6.1a shows an 

isotropic loading-unloading-reloading stress path under an arbitrary constant suction. 

The soil specimen has an initial condition of point D and an initial yield curve of LC1 

with a preconsolidation stress of at s = 0 kPa. The yield stress at s = s2 is at point E. 

The soil is loaded from D to E to V, unloaded from V to D, and then reloaded to F. 

Figure 6.1b illustrates a typical soil response in the v-lnp plane when the hysteresis is 

neglected. The following observations can be made from the process: 



128 

 

 
Figure 6.1. Principle of the MSSA (Zhang et al. 2010). (a). Stress paths for normal 

compression tests. (b) Volume change for a normal compression test at constant 

suction. (c) Three dimensional representation of volume change of the soil. 

1. Regardless of stress path and stress history, the shape and position of the virgin 

consolidation curve EVF are always the same for the soil in the v-lnp plane. Plastic 

loading only changes the range of the virgin consolidation curve. For example, the 
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initial virgin consolidation curve for the soil is EVF. After loading from D to E to V, 

the virgin consolidation curve for the soil is VF.  

2. During an elastic loading or unloading process, for example, from D to E, from V 

to D’, or from D’ to V, the shape and position of the unloading-reloading curve 

remain unchanged in the v-lnp plane.  

3. During plastic loading process, the shape of the unloading-reloading curve remains 

unchanged in the v-lnp plane (κ is a constant), but its position will change. 

Specifically, the unloading-reloading curve will move downward in parallel with the 

original un-loading-reloading curve. The range of the elastic zone also expands due to 

the increase in the preconsolidation stress.  

4. The yield point is the interception of the un-loading-reloading curve and the virgin 

consolidation curve.  

Let us consider two other arbitrary stress paths from D to E, i.e. 1 and 2 as shown in 

Fig.2a, in the elastic zone. Since stress paths 1 and 2 are in the elastic zone, the 

specific volume changes are stress path independent and the results for the two stress 

paths should be the same. Zhang and Lytton (2009a and 2009b) proved that volume of 

the soil in the elastic zone is a surface in the v-p-s space. 

Figure 6.2c shows the specific volume change for the stress paths in Figure 6.1a in the 

v-p-s space. All the elastic volume changes such as stress paths 1 and 2 and DE are in 

the same surface of ABEHGDA. When there is a plastic loading, similar to the 

previous discussion, the shape and position of the virgin consolidation curve EVF are 

always the same in the v-p-s space regardless the previous stress path and stress 

history. It can also be proven that when there is un-loading, any unloading stress path 

must fall on a lower elastic surface parallel to surface ABEHGDA. For example, if 

there is an unloading process from V, the unloading stress path VD’ must fall on the 

surface D’UVW, which is in parallel with surface ABEHGDA.  

Multiple normal compression tests can be performed at any arbitrary suction levels. 

Consequently, the virgin consolidation curves at different suction levels will also form 

a “plastic surface” in the v-p-s space such as BEHUXYZ in Figure 6.1c. The location 

and shape of the plastic surface will always remain the same in the v-p-s space and the 

plastic surface is unique. The uniqueness of the state boundary surface is a 

fundamental assumption made in the constitutive modeling of elasto-plastic soil 

behavior. The uniqueness of the state boundary surface for unsaturated soils has been 
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experimentally verified by Wheeler and Sivakumar (1995). The plastic surface 

BEHUXYZ in Figure 6.1c is actually the shape of the state boundary surface when 

the shear stress is equal to zero (isotropic conditions). Similarly, in the v-p-s space, 

the following criteria can be made for the elastic and plastic surfaces: 

1. The shape and position of the plastic surface BEHUVWX are always the same for 

the soil in the v-p-s space. Plastic loading only changes the range of the plastic 

surface.  

2. During an elastic loading or unloading process, the shape and position of the 

unloading-reloading elastic surface and the plastic surface remain un-changed in the 

v-p-s space. The volume change of any isotropic elastic loading or unloading stress 

path must fall on the elastic surface in the v-p-s space.  

3. During a plastic loading process, the shape of the unloading-reloading elastic 

surface remains un-changed (κ and κs are constants), but its position will change. 

Specifically, the unloading-reloading elastic surface will move downward in parallel 

with the original unloading-reloading elastic surface. The volume change of any 

isotropic plastic loading stress path must fall on the plastic surface in the v-p-s space. 

4. The yield curve is the interception of the un-loading-reloading elastic surface and 

the plastic surface.  

 

SURFACE USED IN THE BBM 

The above criteria can be used to represent un-saturated soil behavior under isotropic 

loading conditions including stress path independency. Zhang and Lytton (2009a) 

derived the mathematical expressions of the elastic surfaces for the BBM and 

successfully used the MSSA to represent many un-saturated soil behavior including 

the stress path in-dependency under isotropic conditions. Figure 6.2 shows the elastic 

and plastic surfaces used in the BBM. 



131 

 

 
Figure 6.2 Shape of the state boundary surface for the BBM (Zhang and Lytton 

2009a). 

 

They include an elastic surface AEFG and the plastic surface which is made up of two 

parts: a plastic collapsible surface EFSCDHR and a plastic expansive surface GFSB. 

                                                     ( )1 ln lne
s ate C p s pκ κ= − − +   (6.1) 

                                               ( )2 ln lnat
s c

at

s p pe C s
p p

κ λ
   +

= − −   
  

  (6.2) 

                                                    ( )3 ln lns ate C p s pκ λ= − − +  (6.3) 

Where, 

ee  =  void ratio in the elastic zone, 

C1  =   constants, 

C2  =  N(0)  constants. The rest of the symbols have the same meanings as those 

defined in the BBM as defined in Chapter II.  
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Note that Figure 6.2  was plotted in scale based on the real data of Case 3 in Alonso et 

al. (1990), with soil parameters of λ(0) = 0.2, κ  = 0.02, λs = 0.08, κs = 0.008, r = 0.75, 

β  = 12.5MPa-1, and pc = 0.10 MPa. From the initial conditions of the soil, i.e. p = 

0.15 MPa, s = 0 MPa, and v = 1.9, C1, C2, and C3 in Equations 6.1 through 6.3 are 

0.844, 1.033, and 0.694, respectively. 

 

ANALYSIS OF AN UNDRAINED TEST USING MSSA 

 

Let us qualitatively analyze an isotropic undrained test using the MSSA as shown in 

Figure 6.3. Figure 6.3a schematically shows the stress path of an undrained test. A 

soil specimen has an initial condition of point G in the elastic zone. The 

corresponding initial position of the LC yield curve is represented by HEB (LC1). 

Under an undrained loading process, the soil followed the stress path from G to E in 

the elastic zone, followed by a plastic undrained loading from E to C. During this 

process, the suction decreases due to the increase in the mechanical stress. Finally 

there is an undrained unloading from C to G’. Due to the irrecoverable plastic 

deformation, the final suction is less than the original suction as shown in Figure 6.3a. 

Figure 6.3b shows the corresponding changes in the specific volume is plotted in the 

v-p-s space. According to the MSSA, GF is on the initial elastic surface ADGHEB, 

and FC is on the plastic surface BEHIFC. The results from the undrained test do 

provide information regarding the shape of the elastic and plastic surfaces and can be 

used to determine the model parameters as shown in Equations 6.1 and 6.2 if the 

BBM model is used to simulate the soil behavior. Figure 6.3 shows results from one 

undrained test only. Figure 6.4 shows results from multiple undrained tests from soil 

specimens with identical stress histories. The elastic and plastic surfaces can be 

directly determined from those undrained test results. Figure 6.5 shows the results 

from multiple undrained tests from soil specimens with different stress histories. The 

virgin compression curves EC, VF, and XI can therefore be used to determine the 

shape of the plastic surface. The elastic surface can easily be determined by finding 

the constants κ and κs with high accuracy. As long as the shape of the elastic and 

elasto-plastic surfaces can be accurately determined, the shapes of yield curve and its 

evolutions can be accurately determined. Under this situation, only the MSSA will 

give correct results. 
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Figure 6.3. Analysis of an undrained test using the MSSA. (a) Stress path for an 

undrained loading and unloading test. (b) Changes in the specific volume in the v-p-s 

space for the undrained test.  
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Figure 6.4. Analysis of multiple undrained tests with identical stress histories. 

 

 
Figure 6.5. Analysis of multiple undrained tests with different stress histories 
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DETERMINING PARAMETER VALUES IN BBM BY COMBINING THE 

MSSA AND NEWTON METHODS 

The MSSA summarized the BBM under isotropic stress conditions into two concise 

surfaces: the elastic surface (equation 6.1) and the plastic surface (equation 6.2), if the 

plastic expansive surface 6.3 is not considered. While the elastic surface is easy to 

determine (C1 in equation 6.1 can be determined by initial condition of the soil), 

calibration of the BBM under isotropic stress conditions is simplified into the 

following problem: find a combination of the model parameters of N(0), λ(0), r, β, 

and pc to best fit the experimental results at virgin states using equation 6.2. Since all 

the five model parameters have physical meanings, there are also some constraints as 

follows:  

(0) 0, (0) 0, 0, 0, 0cN r pλ β> > > > >    and  6.4  

Mathematically, the problem can be described as follows: calibration of the BBM 

under isotropic stress conditions is to find an appropriate combination of 

(0) (0)
TcX N r pλ β =          , which can minimize the overall difference between the 

experimental data at virgin states and the theoretical results as predicted by equation 

6.2 for each laboratory test under the constraints of equation 6.4. The corresponding 

objective function can be expressed as follows using the Euclidean norm and 

independent state variables for all experimental points at virgin states: 
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6.5 

 

If all the experimental results have the same weight wi of 1, the above objective 

function is actually the least-squares method in which the objective function is 

defined as the sum of the squares of the difference between the experimental value vs. 

theoretical values predicted by equation 6.2 (that is, the sum of the squares of the 

residuals). The “best” fit is defined as a combination of model parameters which 
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results in the least error between results from the ISC tests compared to the predicted 

values using equation 6.2. The least squares method finds its optimum when the sum 

of squared residuals, F(X), is the minimum subject to constraints in equation 6.4. 

According to criterion 1 of the MSSA, the shape and position of the plastic surface are 

always the same for the soil in the v-p-s space and plastic yielding can only change 

the range of the plastic surface. Consequently, even if the soil specimens used in the 

isotropic compression tests at different suction levels have different stress histories as 

shown in Fig.6.5, the results can still be used to calibrate the model parameters for the 

BBM. Under this condition, the accurate LC yield curve can be obtained using the 

criterion 4 of the MSSA after the elastic and plastic surfaces are determined: that is, 

the yield curve is the interception of the unloading-reloading elastic surface and the 

plastic surface. Zhang and Xiao (2012) developed an optimization approach for 

simple and objective identification of material parameters in the BBM. It used the 

Newton or Quasi-Newton method to simultaneously determine the five parameters 

governing isotropic virgin behavior in the BBM. The proposed method was used in 

this research project to determine the model parameters based upon the test results 

presented in Chapter V. Table 6.1 shows the calibrated model parameters for the 

BBM using the test results in Chapter V under isotropic conditions.  

 

Table 6.1 Calibrated Model Parameters for the BBM 

 
 

Figure 6.6 shows the predicted LC yield curve in the s-p plane using the final results 

of the model parameters in table 6.1.  Since the BBM with these model parameters 

provides a good representation of the soil behavior, an accurate prediction of the 

constant suction normal compression lines will automatically result in correct estimate 



137 

 

of the form of the LC yield curves and the hardening parameters. The LC yield curve 

is obtained according to criterion 4 in the MSSA: the LC yield curve is the 

interception of the unloading-reloading elastic surface (equation 6.1) and the plastic 

surface (equation 6.2). By making equation 6.1 equal to equation 6.2, the LC yield 

curve can be obtained by varying the value of C1 in equation 6.1. On the yield curves, 

the suction increases with increase of the mean net stress, which are typical for 

compacted soils with collapsible behavior as shown in the Alonso et al. (1990) and 

Zhang and Lytton (2009a and 2009b). 

 

 
Figure 6.6 Predicted LC Yield Curve Based upon the Model Parameters 

Figures 6.7 through 6.14 shows the experimental results and the predictions based 

upon the model parameters in Table 6.1 for undrained compression tests at constant 

water contents of 15.1%, 12.3%, 9.9%, 8.4%, 8.3%, 7.6%, 7.3%, and 6.5%, 

respectively. Inspection of these figures indicates that all the predictions reasonably 

matched the test results.  
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(a) 

 
(b) 

Figure 6.7 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=15.1%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.8 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=12.3%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.9 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=9.9%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.10 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=8.4%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.11 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=8.3%. (a) In the v-p plane and (b) at in the v-s plane 



143 

 

 
(a) 

 
(b) 

Figure 6.12 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=7.6%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.13 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=7.3%. (a) In the v-p plane and (b) at in the v-s plane 
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(a) 

 
(b) 

Figure 6.14 Comparison of Predicted and Experimental Results for an Undrained Test 

at w=6.5%. (a) In the v-p plane and (b) at in the v-s plane
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this study, a method was developed to characterize constitutive behavior of 

unsaturated soil. Literature review on existing modeling methods were reviewed 

which included triaxial testing method, development of high suction tensiometers and 

existing elasto-plastic theories for unsaturated soils. In this study, undrained suction-

monitored triaxial test was adopted to investigate unsaturated soil behavior during 

loading. By conducting undrained isotropic compression and shear tests on Fairbanks 

silt, constitutive model parameters were determined. To monitor soil suction change 

during loading, high-suction tensiometers were developed in this study based upon an 

EPXO pressure transducer from Measurement Specialties, Inc. Also, to perform the 

suction-monitored isotropic compression and triaxial tests by using conventional 

triaxial test apparatus for triaxial test on saturated soils, a new volume change 

measurement method was developed by integrating photogrammetry, optical-ray 

tracing, and least square estimation technique. 

 

CONCLUSIONS 

 

The conclusions summarized from this study are listed as follows: 

 

1. By reviewing existing suction-controlled triaxial test for constitutive modeling of 

unsaturated soil, it was found that drained suction-controlled triaxial test for modeling 

constitutive behavior of unsaturated soil was problematic. It is very time consuming 

to perform drained suction-controlled triaxial test low permeability of fine graded soil. 

Also, the test equipment (double-wall cell is most widely used) to perform the drained 

suction-controlled triaxial test is very expensive. All existing methods to measure soil 

volume change during testing have their limitations. 

2. By using a miniature pressure transducer and minimizing the volume of the water 

reservoir, a new high-suction tensiometer was designed, fabricated, saturated, and 

calibrated to be used to monitor soil suction change during undrained compression 

and shear tests. For a fully saturated tensiometer with a 15 bar ceramic disc, the 
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maximum attainable suction that can be measured was around 1100 kPa which 

covered most volume range of natural soil.  

3. A new image based method was developed to monitor soil volume change during 

isotropic compression and triaxial shear tests. This non-contact real 3D method was 

proved to be low cost and accurate.  

4. In this study, to modeling constitutive behavior of unsaturated soils, undrained 

suction-monitored triaxial tests were performed on Fairbanks silt. These undrained 

tests significantly reduced the time (from one month to one day) needed to expel 

water out of the soil specimen for drained tests. Also, this undrained suction-

monitored triaxial tests successfully overcome the limitations by using conventional 

drained suction-controlled triaxial test. Thus, undrained suction-monitored triaxial test 

can be used as an alternative to suction-controlled triaxial tests to investigate 

unsaturated soil behavior.  

In conclusion, in this research we develop a system in which a conventional triaxial 

test apparatus for saturated soil can be used for triaxial test on unsaturated soil without 

modification. Both total volume change and strain localization can be determined. 

This significantly reduced the cost for testing unsaturated soils when compared with 

double-wall cell apparatus. It took only several hours (or at most one day) to complete 

one undrained test, while it takes several months to finish a suction controlled 

consolidated drained test. The cost for suction controlled double cell triaxial test 

equipment is also higher.  

 

RECOMMENDATIONS 

 

1. A high-suction tensiometer was developed for the suction measurement during 

testing. For the 70 mm × 140 mm specimen used in this study, to ensure a good 

contact between specimen surface and the tensiometer, contact area on specimen 

surface was pre-flatted before tensiometer installation. The tensiometer is relatively 

big for small specimens (50 mm × 100 mm). It is recommended that smaller miniature 

pressure transducers be used for the fabrication of high-suction tensiometer. By using 

a smaller tensiometer, specimen size can be reduced to 50 mm × 100 mm which is 

consistent with previous studies. Also, by using smaller tensiometer, contact between 

soil specimen and tensiometer can be easily satisfied. 
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2. For a fully saturated tensiometer with a 15 bar ceramic disc, the maximum 

attainable suction that can be measured was around 1100 -2600 kPa. It is 

recommended that thermal coupled psychrometers be used for suction higher than 

1500kPa.  

3. A new image based method was proposed in this study to accurately monitor soil 

volume change during triaxial testing. This method excelled all existing volume 

change measurement methods in different ways. However, there is still room for 

improvements. In the existing method, it requires a number of measurement targets to 

be posted on soil specimen, which limited number of measurement points. It is 

recommended that in the future, the membrane on specimen surface be painted with 

different textures and image correlation method be used to determine the pixel 

positions of the texture on membrane. In this way, no measurement target is needed to 

be posted on the membrane. Also, a denser surface (point cloud), which represent the 

specimen surface, could be generated. Thus, more accurate measurement result could 

be reached. In addition, strain localization could be more accurately extracted from 

the shape change of the dense surface. 

4. The application of this proposed image based measurement method could 

potentially be expanded to other multi-media situations.  

5. In this study, undrained triaxial test was used to investigate unsaturated soil 

behavior during loading. Method has been developed to analyze the soil behavior 

under isotropic conditions based upon the modified state surface approach. There is a 

great need to extend the method to triaxial stress conditions of true-triaxial stress 

conditions.  

6. The method developed was used to develop constitutive models for unsaturated 

soils. It seems that as similar approach can be developed to simplify the 

characterization and modeling of saturated soil behavior since saturated soil is a 

special case of unsaturated soils.  
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Appendix A 
 
 
As discussed before, this method can be used for measurement of underwater object. 

Thus, if the 3D coordinates of the underwater object is known, this method could be 

used to back-calculate the refractive index of water. The following experiment was 

designed and performed to accurately determine the refractive index of the tap water. 

As shown in Figure A.1a, several measurement targets were glued to a stainless steel 

container. Targets at the edge of the container were used to build the coordinate 

system. The four targets at the bottom of the container were used to back-calculation 

the refractive index of water. Image capturing was performed first to determine the 

3D coordinates of those targets by photogrammetric method. Then, as shown in 

Figure A.1b, container was filled with water and some more measurement targets 

were placed at the water surface. After this, image capturing was performed again.  

 

 
(a) without water                                              (b) with water 

Figure A.1 Container with and without water 

 

For the second group of images, 3D coordinates of targets at water surface and edge 

of the water container can also be determined by photogrammetric method in the 

same coordinate system. The 3D coordinates of the four targets at the bottom of the 

container were determined from the first groups of images. 3D coordinates of the 

targets on top of the water were used to determine the water surface by least square 

method. Just like eyes of human being, the optical ray was also considered to be a 

straight line for camera. Thus, for an underwater object, two points which are the 

perspective center of the camera station and the object coordinates in the image can 

define an optical ray. Based on this, the optical rays for the underwater targets can be 
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determined. Thus, given the optical rays, interface and the object coordinates, the 

refractive index of the used tap water can be back-calculated to be 1.339 by least 

square method. 
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Appendix B 

 

To address the mathematic 3D coordinates calculation of a single measurement target, 

an example is presented for the drained triaxial test on the saturated sand specimen 

under a confining pressure of 100 kPa with no shear load. After photogrammetric 

analysis, all images obtained were idealized based on the calibration results as shown 

in Table 3.1. By processing image orientation, all camera positions and orientations 

for each image were determined as shown in Table B.1. Also, 3D coordinates for all 

measurement targets on acrylic cell in the global coordinate system were determined 

as shown in Table B.2. Based on these 3D coordinates, regression can be processed to 

determine the parameters in Equations 3.17 and 3.18 which represent the shape of the 

outside acrylic cell wall. Since the triaxial cell used for this test is brand-new and 

under a low confining pressure of 100 kPa, a function for the cylindrical shaped cell 

was used for the regression. The regression results are presented in Table B.3. 
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Table B.1 Camera stations 

Picture 
 ID 

3D Coordinates (mm) Rotation Angles (degree) 
Xs Ys Zs κ ω φ 

1 197.276 12.671 1529.483 0.031 -0.310 -0.628 
2 189.256 305.667 1436.547 0.224 -12.353 -0.721 
3 202.527 -371.998 1477.686 -0.264 14.336 -0.139 
4 -753.624 3.638 1014.935 -0.422 -0.398 -43.464 
5 1143.568 -1.716 978.379 -0.250 0.389 43.340 
6 998.928 40.886 364.492 93.435 -3.600 64.250 
7 843.272 36.984 570.823 92.018 -2.464 47.425 
8 572.708 37.832 759.643 93.370 -2.122 25.857 
9 234.078 41.455 825.782 90.812 -1.881 1.835 
10 -87.136 47.815 770.335 89.413 -2.517 -20.339 
11 -348.243 22.654 539.275 89.231 -1.834 -45.296 
12 -463.997 37.553 349.359 86.898 -2.386 -61.632 
13 -453.070 25.433 203.199 84.188 -5.752 -71.205 
14 -632.377 22.055 -256.221 -86.809 -177.175 -73.174 
15 -575.045 45.986 -384.515 -85.242 -174.212 -63.692 
16 -438.337 57.128 -592.990 -86.081 -175.409 -47.752 
17 -153.596 54.674 -732.853 -87.994 -176.539 -25.768 
18 214.719 54.205 -776.019 -88.606 -176.643 1.093 
19 493.724 53.223 -713.704 -90.575 -176.669 22.653 
20 663.325 45.610 -600.446 -92.347 -175.869 37.840 
21 805.201 48.968 -372.163 -93.715 -174.187 58.658 
22 952.235 35.656 -299.874 83.981 -173.457 68.883 
23 728.918 14.621 -1159.361 179.823 -178.706 25.231 
24 202.433 30.046 -1196.233 179.981 -178.818 0.381 
25 -440.738 27.049 -1024.387 -178.337 -178.425 -32.127 
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Table B.2 3D coordinates for measurement points on cell wall (1) 

Point ID 
3D Coordinates (mm) 

Point ID 
3D Coordinates (mm) 

x y z x y z 
760 260.989 98.835 -68.586 809 125.430 101.671 -47.225 
761 254.144 98.850 -75.092 810 129.913 101.681 -55.457 
762 246.589 98.855 -80.759 811 135.415 101.689 -63.048 
780 282.874 99.205 1.141 812 159.382 101.360 60.791 
782 283.517 99.103 -17.825 814 144.236 101.657 49.744 
783 282.278 99.026 -27.242 815 137.644 101.819 42.953 
784 240.240 100.881 61.624 816 195.467 101.070 71.594 
785 248.311 100.698 56.762 817 186.097 101.160 70.526 
786 255.716 100.497 50.908 818 176.877 101.253 68.379 
787 262.398 100.291 44.293 819 168.001 101.323 65.163 
788 266.337 98.178 -62.382 820 248.032 45.950 56.806 
789 271.741 98.234 -54.676 821 248.163 36.502 56.644 
790 276.246 98.301 -46.433 822 248.283 27.060 56.473 
791 279.619 98.318 -37.662 823 248.444 17.582 56.356 
792 281.034 99.004 9.982 824 141.891 101.318 -70.270 
793 278.151 99.286 18.923 825 148.895 100.931 -76.554 
794 274.253 99.575 27.501 826 156.602 100.523 -82.004 
795 269.280 99.795 35.545 828 202.408 99.170 -94.610 
796 238.781 98.583 -85.216 829 192.980 99.432 -94.337 
797 230.173 98.670 -89.065 830 183.695 99.671 -92.974 
798 221.150 98.744 -91.969 831 174.643 99.871 -90.537 
799 211.918 98.818 -93.885 832 232.467 100.606 65.321 
800 131.374 102.129 34.818 833 223.597 100.773 68.432 
801 126.592 102.155 26.665 834 214.434 100.963 70.514 
802 122.759 102.184 18.034 835 205.045 101.129 71.534 
803 119.936 102.228 8.987 836 247.270 86.918 57.382 
804 118.008 102.258 -0.721 837 247.346 77.493 57.338 
805 117.364 102.202 -10.130 838 247.391 68.020 57.257 
806 117.840 102.164 -19.584 839 247.439 58.584 57.177 
807 119.310 102.099 -28.876 840 152.820 -24.619 -79.677 
808 121.964 101.633 -38.444 841 152.876 -15.170 -79.751 
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Table B.2 3D coordinates for measurement points on cell wall (2) 

Point ID 
3D Coordinates (mm) 

Point ID 
3D Coordinates (mm) 

x y z x y z 
842 152.983 -5.723 -79.744 873 265.160 67.556 -63.623 
843 153.055 3.758 -79.786 874 265.237 76.952 -63.577 
844 152.521 45.787 -79.333 875 265.277 86.398 -63.495 
845 152.541 36.371 -79.319 876 152.171 -37.253 -79.275 
846 152.501 26.924 -79.402 877 152.160 -46.676 -79.304 
847 152.501 17.525 -79.423 878 152.076 -56.153 -79.441 
848 248.098 -23.452 56.513 879 152.068 -65.588 -79.473 
849 248.116 -14.016 56.482 880 133.760 -25.674 38.277 
850 248.154 -4.628 56.470 881 133.728 -16.227 38.168 
851 248.247 4.760 56.540 882 133.674 -6.777 38.068 
852 153.073 58.378 -79.625 883 133.604 2.703 38.004 
853 153.064 67.766 -79.666 884 133.865 16.522 38.238 
854 153.112 77.166 -79.642 885 133.740 25.938 38.096 
855 153.130 86.613 -79.661 886 133.632 35.384 37.934 
856 247.745 -65.972 56.619 887 133.523 44.794 37.795 
857 247.905 -56.544 56.567 888 133.573 57.617 37.866 
858 248.044 -47.069 56.474 889 133.449 67.042 37.734 
859 248.215 -37.628 56.415 890 133.341 76.428 37.590 
860 264.745 -38.032 -64.055 891 133.279 85.805 37.409 
861 264.672 -47.485 -64.078 892 134.084 -66.610 38.802 
862 264.626 -56.925 -64.108 893 133.957 -57.224 38.706 
863 264.568 -66.404 -64.138 894 133.911 -47.821 38.554 
864 265.135 4.543 -63.644 895 133.843 -38.376 38.411 
865 265.048 -4.875 -63.651 896 247.240 -78.676 56.968 
866 265.032 -14.332 -63.707 897 254.743 -78.572 51.249 
867 265.031 -23.726 -63.773 898 261.559 -78.457 44.641 
868 265.007 46.167 -63.829 899 267.534 -78.342 37.360 
869 264.916 36.735 -63.884 900 135.997 -78.533 41.167 
870 264.857 27.350 -63.973 901 130.301 -78.700 33.641 
871 264.785 17.965 -64.046 902 125.566 -78.884 25.477 
872 265.143 58.168 -63.717 903 121.921 -79.129 16.728 
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Table B.2 3D coordinates for measurement points on cell wall (3) 

Point ID 
3D Coordinates (mm) 

Point ID 
3D Coordinates (mm) 

x y z x y z 
904 203.716 -79.577 71.507 928 135.703 -79.052 -64.090 
905 194.300 -79.383 71.341 929 142.028 -79.159 -71.093 
906 184.924 -79.220 70.099 930 149.114 -79.262 -77.246 
907 175.822 -79.054 67.794 931 156.858 -79.366 -82.550 
908 166.545 -78.866 64.385 932 193.898 -79.076 -94.460 
909 158.134 -78.685 60.220 933 184.583 -79.059 -93.226 
910 150.366 -78.494 54.914 934 175.452 -79.053 -90.988 
911 143.192 -78.333 48.844 935 166.636 -79.084 -87.738 
912 239.819 -79.088 61.424 936 202.714 -79.519 -94.706 
913 231.323 -79.107 65.442 937 212.106 -79.356 -93.886 
914 222.435 -79.128 68.504 938 221.381 -79.214 -91.988 
915 213.200 -79.152 70.514 939 230.343 -79.094 -89.021 
916 119.146 -78.805 7.204 940 282.279 -78.191 2.088 
917 117.460 -78.823 -2.083 941 280.146 -78.382 11.241 
918 116.943 -78.835 -11.559 942 277.028 -78.574 20.179 
919 117.517 -78.855 -20.996 943 273.016 -78.757 28.789 
920 238.705 -78.991 -85.342 944 279.715 -79.089 -35.730 
921 246.801 -78.936 -80.485 945 281.939 -78.935 -26.565 
922 254.238 -78.892 -74.656 946 283.200 -78.750 -17.233 
923 261.065 -78.836 -68.081 947 283.291 -78.599 -7.808 
924 119.104 -79.205 -30.281 948 267.630 -78.695 -60.255 
925 121.672 -79.087 -39.365 949 272.634 -78.953 -52.274 
926 125.323 -78.986 -48.086 950 276.757 -79.211 -43.839 
927 130.008 -78.912 -56.227         

 

Table B.3 Regression parameters for acrylic cell wall 

A B C Xr Yr Zr κ (deg.) ω (deg.) φ (deg.) 
0 0 6915.455 200.674 100.000 2.526 0.136 -0.056 -4.008 

 

The measurement point on soil specimen surface with an ID number of 177 was used 

as an example to describe the calculation for its 3D position. After orientation for 

each camera station, pixel positions for point 177 in the corresponding images (after 

idealization) could be determined as shown in Table B.4. A total number of eight 
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images were found to have point 177. Then, based upon Equations 3.12 and 3.13, 3D 

coordinates of point 177 on each image plane in the global coordinate system can be 

calculated from their pixel positions by using calibration results from Table 3.1 

(calibration 2). Since the camera positions for each pictures was known as shown in 

Table B.1, by connecting the camera station with the corresponding point on its image 

plane, all the unit vectors i


for each optical ray can be determined as shown in Table 

B.4.  

Table B.4 Point information on each corresponding image 

Point 
ID 

Picture 
ID 

Pixel Position (Pixel) 3D Coordinates (mm) Vector i


 
mo no x y z αa βa γa 

177 

1 2502.93 1610.76 198.058 12.489 1476.086 0.0146 -0.0034 -0.9999 

2 2552.38 1566.75 190.371 294.567 1384.320 0.0209 -0.2078 -0.9779 

3 2557.29 1557.91 203.128 -358.416 1426.040 0.0113 0.2543 -0.9671 

6 2334.50 1205.18 949.914 38.771 343.277 -0.9170 -0.0396 -0.3969 

8 2419.61 1654.54 549.531 35.834 711.573 -0.4340 -0.0374 -0.9001 

9 2356.86 1774.29 233.091 39.175 772.430 -0.0185 -0.0427 -0.9989 

10 2362.24 2018.21 -66.758 45.115 721.006 0.3813 -0.0505 -0.9231 

11 2485.39 2156.30 -308.432 21.584 503.600 0.7446 -0.0200 -0.6672 

 

Since the parameters needed to determine the shape and location of the acrylic cell 

wall was determined from the regression as shown in Table B.3, combined with the 

optical rays (defined by the corresponding camera station and unit vector i


), the 

distance l1 between the camera station and the interception for each ray can be 

computed as shown in Table B.5. Then, the 3D coordinates of the interceptions can be 

determined which are also shown in Table B.5. The normal vector 1n


for the eight 

interceptions can be determined through Equation 3.21 and the results are shown in 

Table B.5. By applying optical ray tracing technique as addressed before, optical rays 

1r


after refraction can be determined as presented in Table B.5. Repeating the ray 

tracing process, the eight optical rays 2r


after two times of refractions are presented in 

Table B.6. By conducting the least square estimation as shown in Equation 3.25, a 

best estimation for point 177 was found in Table B.7. As presented in Table B.7, all 
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the eight distances d between the estimated point and optical ray after two times of 

refractions are less than 0.04 mm which indicated an accurate estimation. 

 

Table B.5 First optical-ray tracing (air to acrylic cell) results 

Interception point 
l1 

Normal vector 1n


 Vector 1r


 
x y z αn1 βn1 γn1 αr1 βr1 γr1 

218.633 7.697 69.631 1460.017 -0.2195 0.0015 -0.9756 -0.0638 -0.0018 -0.9980 
218.449 15.160 69.683 1397.699 -0.2171 0.0015 -0.9762 -0.0600 -0.1389 -0.9885 
218.912 -1.703 69.553 1456.099 -0.2231 0.0015 -0.9748 -0.0690 0.1711 -0.9828 
261.225 9.053 45.191 804.470 -0.7316 0.0025 -0.6817 -0.8657 -0.0257 -0.4998 
236.922 8.889 63.203 773.705 -0.4394 0.0019 -0.8983 -0.4358 -0.0244 -0.8997 
220.076 9.117 69.295 757.307 -0.2368 0.0015 -0.9716 -0.0917 -0.0281 -0.9954 
201.495 9.564 71.653 756.919 -0.0134 0.0010 -0.9999 0.2511 -0.0335 -0.9674 
177.257 8.532 68.380 705.756 0.2781 0.0002 -0.9606 0.6012 -0.0133 -0.7990 

 

Table B.6 Second optical-ray tracing (air to acrylic cell) results 

Interception point 
l2 

Normal vector 2n


 Vector 2r


 
x y z αn2 βn2 γn2 αr2 βr2 γr2 

218.005 7.679 59.813 9.838 -0.2399 0.0015 -0.9708 -0.0434 -0.0022 -0.9991 
217.853 13.780 59.860 9.938 -0.2377 0.0015 -0.9713 -0.0390 -0.1548 -0.9872 
218.224 0.004 59.747 9.978 -0.2432 0.0015 -0.9700 -0.0482 0.1903 -0.9805 
252.573 8.796 40.196 9.993 -0.7105 0.0024 -0.7037 -0.8803 -0.0289 -0.4736 
232.693 8.651 54.473 9.703 -0.4398 0.0019 -0.8981 -0.4354 -0.0274 -0.8998 
219.175 8.840 59.516 9.825 -0.2558 0.0016 -0.9667 -0.0726 -0.0315 -0.9969 
204.035 9.224 61.870 10.114 -0.0497 0.0011 -0.9988 0.2856 -0.0375 -0.9576 
183.556 8.392 60.007 10.479 0.2290 0.0004 -0.9734 0.6407 -0.0149 -0.7677 
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Table B.7 Least square estimation for the point 

Point ID Picture ID d (mm) 
3D Coordinates (mm) 

x y z 

177 

1 0.021 

216.321 7.611 20.694 

2 0.029 
3 0.032 
6 0.005 
8 0.028 
9 0.026 
10 0.008 
11 0.040 

 

 
 


	1. Camera is clearly a very important part of any photogrammetry measurement. If a camera is suitable for photogrammetry measurement depends on several factors. Digital single-lens reflex camera with fixed focal length lens is preferred in our case. H...
	1. Camera used for this method was calibrated to determine the intrinsic parameters (focal length, principle point, distortion parameters). Based on calibration parameters, lens distortion could be eliminated and idealized images could be obtained for...

